

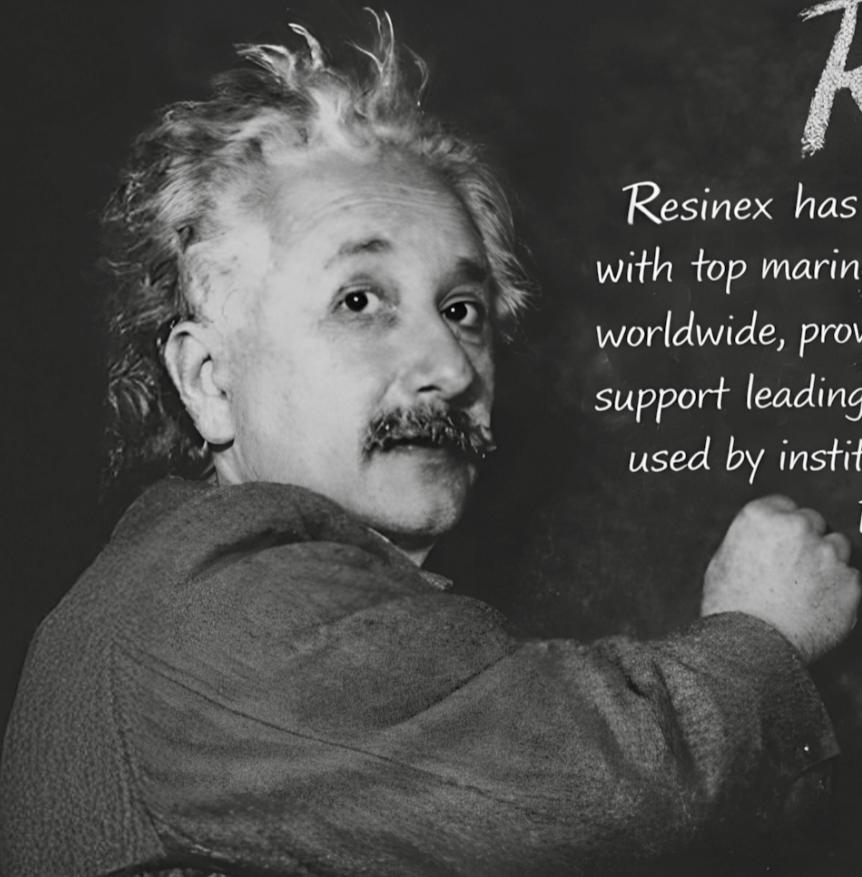
RESINEX news

#29 2026/2027

Resinex Trading S.r.l
Via Cappuccio, 14
20123 Milan (Italy)
www.resinextrad.com

Milan
Via Cappuccio, 14
Ph +39.02.7201 3463
Fax +39.02.7210 5548
marketing@resinextrad.com

Torbiato di Adro
Via Artigiani, 15
Ph +39.030.745 7245
Fax +39.030.735 6185
production@resinextrad.com


Adro
Via Laveni, 14
Ph +39.030.745 1194
Fax +39.030.735 6185
r&d@resinextrad.com

Resinex Co.Se.Ma
Via Campania, 29
61122 Pesaro (Italy)
Ph +39.0721 455337
info@cosema.biz
marketing@resinextrad.com

Resinex Asia
Level 49, One Raffles Quay
North Tower, Singapore 048583
Ph. +65.66225532
sales@resinexasia.com
www.resinexasia.com

Oceans 7

Driving innovation with top universities

Resinex

Resinex has a long tradition of collaboration with top marine universities and research centers worldwide, providing expertise and equipment that support leading scientific projects. Our solutions are used by institutions such as GEOMAR, the Max Planck Institute, Leibniz Institute, NUS, NIOT, AWI, University of Florence, DIAS, NIWA, and many others, reflecting our ongoing commitment to advancing global oceanic research.

ALFRED-WEGENER-INSTITUT
HELMHOLTZ-ZENTRUM FÜR POLAR-
UND MEERESFORSCHUNG

Institut Ard-Léinn Bhailé Átha Cliath
Dublin Institute for Advanced Studies

www.resinextrad.com

www.resinexasia.com

New spherical ADCP buoys rated for 3500 mt water depth

Resinex has expanded its already broad range of oceanography products

ADCP buoys are buoyant devices that integrate Acoustic Doppler Current Profilers (ADCPs) which is a non-contact, acoustic-based sensor used to measure the velocity of water currents. How does an ADCP buoy work? An ADCP sends out pulses of sound into the water, and when these sound waves bounce off particles suspended in the water, the ADCP measures the changes in frequency (the Doppler shift) of the returning sound waves. This change is used to determine the speed and direction of the water at different depths and is then processed in a hydrograph through software analysis. These oceanographic buoys facilitate the acquisition of high-resolution data on ocean current dynamics, which is crucial for ocean modeling and climate research. Reaching a depth of 3500 meters enables the collection of oceanographic data that was previously unattainable, opening new frontiers for deep-sea research and monitoring. Those buoys are designed in a spherical shape in order to minimize viscous friction, filled with syntactic foam and with polyurethane elastomer finish. Our ADCP buoys are engineered to be stable, strong, and resistant to the marine environment, designed to outperform and outlast conventional mooring flotation, allowing a great degree

of customization to meet each client's needs. In 2023, India's NIOT and in 2024 Italy's Codevintec asked us to manufacture a special support buoy to collect data from an ADCP. Niot (National Institute of Ocean Technology), through our partner Nipun, requested a buoy with a diameter of 1350 mm and capable of going up to 3500 mt below sea level, ensuring reliable data collection in demanding marine environments. Codevintec, a leading provider of advanced geophysical and oceanographic instrumentation, required four mooring systems for Fincantieri's new oceanographic ship (NIOM), each featuring various monitoring systems, including ADCPs. These buoys have a diameter of 1350 mm and can operate at depths of up to 1500 meters below sea level. Thanks to our partner Codevintec, we secured the opportunity to participate in this exciting project. With these new developments, Resinex reaffirms its commitment to innovation in oceanographic technology, alongside the dedication to support scientific institutions and industry leaders in their pursuit of accurate, reliable data from the most challenging marine environments. Whether for coastal monitoring or deep-ocean exploration, Resinex ADCP buoys are setting new standards in performance, durability, and customization.

Innovative float for Lidar buoy

CLS Southern Africa, based in Cape Town, is specialized in the field of marine instrumentation, oceanography, coastal engineering, in support of the offshore sectors and science. CLS has chosen Resinex to develop a new modular float for its Lidar buoy.

Resinex has therefore studied, developed and produced a float with particular dimensional and stability performances, a modular buoy with two modules. It has a diameter of 3.4 meters and a buoyancy of 5640 kg.

Resinex technical department projected some particular passages which go through the float that was specifically designed to optimize the assembly of the metal part.

The CLS LIDAR buoys are oceanographic buoys equipped with LIDAR (Light Detection and Ranging) sensors to collect environmental data, in particular information on wind, waves and currents. They are particularly used in the offshore wind industry, oceanographic research and environmental monitoring.

Environmental Sensing Buoy

Singaporean Modular Buoy for Ocean Research

In 2023, the **National University of Singapore** partnered with **Resinex** to develop a custom-designed instrumental buoy for the innovative **MESN** (Marine Environmental Sensing Network) project, with the purpose of creating an advanced environmental monitoring network in Southeast Asian waters. The data collected by the units is processed through the **Ombak** platform (which means “wave” in Malay), providing real-time access to the gathered information.

Measurements focus on crucial parameters for studying climate change and its impact on marine ecosystems, such as water quality, its acidification, oxygenation and nutrient presence.

This initiative promotes collaboration among various institutions to collect as much data as possible and strengthens the link between research centers and industry, with the goal of testing and validating innovative marine technologies.

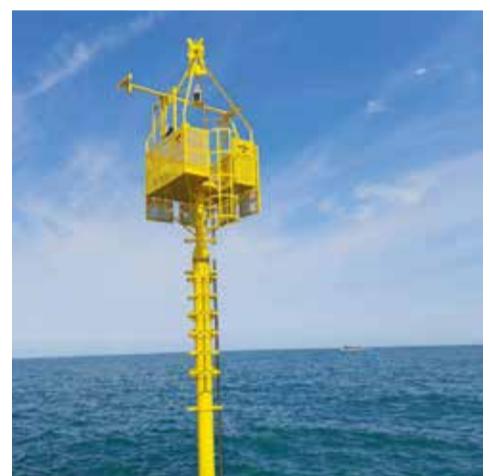
For example, in 2024, these analyses enabled researchers to promptly detect a massive coral bleaching event during a major marine heatwave.

To meet these needs, **Resinex** designed a unique solution: a non-symmetrical modular buoy composed of six floating segments. The structure supports a tower topped with a marine beacon, self-powered and visible up to 4 nautical miles. The dual mooring system ensures stability and position retention even in significant wave and current conditions.

This configuration minimizes oscillations and movements of the buoy, guaranteeing measurement accuracy and sensor protection. Thanks to this solution, the buoy can operate reliably for extended periods, maintaining consistent data quality. Another significant innovation lies in the buoy's superstructure, made of aluminum and designed to house a telescopic pole inside, capable of extending

below the float and the counterweight, allowing the integration of devices without interference from the structure itself. The inclusion of through-holes (moon pools) inside four of the six polyethylene floating segments proved essential, as it provides flexibility in choosing sensors (and therefore measurements) to install, opening up previously unthinkable research possibilities.

With its flexible and robust design, **Resinex** introduces a modular, high-performance solution for marine monitoring, capable of integrating multiple sensors under complex operating conditions. This innovation not only ensures reliable and continuous data collection but also offers the possibility to customize the configuration according to research needs.



Save the Oysters!

A new European Initiative

The project aims to restore flat oyster (*Ostrea edulis*) beds in the central-northern Adriatic Sea. These natural structures, once common and rich in biodiversity, have now almost completely disappeared. The goal is to recreate a crucial habitat for the balance of the marine ecosystem, as these beds help reduce coastal erosion, promote marine biodiversity, and capture carbon dioxide, all essential services for our marine ecosystems. Globally, it is estimated that 85% of natural oyster reefs have been lost. To reverse this trend, PNRR MER (Marine Ecosystem Restoration) ensured OSTREA a project with the task to design interventions to regenerate those marine ecosystems. At each site, a Resinex elastic beacon has been installed as a fixed monitoring structure. Resinex's elastic beacons, thanks to their high adaptability and durability, have proven to be the ideal answer to a demanding project: the stability of observation points, resistance to high wind and current speeds, and waves reaching up to 8.5 meters are some of the challenges we had to face. Each of the seven elastic beacons installed in the Adriatic Sea reaches different seabed depths, ranging from 12 meters to 29 meters. With a focal point of 7.5 meters, Resinex's elastic beacons ensure superior visibility compared to traditional floating systems: during the day thanks to the aluminum day shape, and at night through the implementation of Resinex-CoSeMa self-powered CL301 lantern, visible up to 4 nautical miles. The walkable platform surface has been expanded to 1800 mm x 1800 mm, in order to accommodate control and data transmission systems, while allowing safe repairs when needed. This space was essential for installing a power pack consisting of four solar panels and four batteries. The equipment includes a data logger, a 4G router, a surface camera, an underwater camera, and two multiparameter probes. Each probe is housed in a protective cage and connected to a cable system that allows it to be raised or lowered at different depths. This initiative confirms our mission: to provide reliable and innovative technologies that meet the most complex challenges of the marine environment. Resinex continues to be the trusted partner for those seeking safety, performance, and tailor-made solutions for every project.

Protect the Black Sea

The company Orion Europe, already a partner of Resinex in various projects in the Black Sea, has requested our collaboration again to participate in a public tender related to EMSO-EUXINUS, a research infrastructure that is part of the EMSO ERIC system and is dedicated to environmental monitoring of the Black Sea. The project, operationally coordinated by GeoEcoMar, one of Romania's leading marine and geological research institutes, aims to monitor marine natural hazards in the Black Sea, with the goal of collecting data to prevent and mitigate the impact of events such as earthquakes and tsunamis. Resinex provided the necessary buoyancy solutions for the project, focusing on the implementation of:

- Three elastic beacons equipped with solar panels and a focal plane of 7500 mm, each fitted with a tsunami detector.
- Three light buoys, also equipped with solar panels and measurement sensors, with a light signal visible up to 5 nautical miles and a net buoyancy of 2000 kg.
- Nine spherical support buoys, designed to reach depths of up to 100 meters, useful for supporting the detection equipment necessary for scientific measurements on the seabed.

These devices are equipped with advanced sensors that collect acoustic data and transmit it in real time to the surface buoys. The data is then sent via satellite to the EUXINUS Marine Natural Hazards Monitoring and Alarm Center in Constanța. This center, thanks to cutting-edge technological infrastructure and specialized software, ensures continuous monitoring, processing, and automatic transmission of data, ensuring rapid interventions in case of hazards.

Resinex solutions will allow this infrastructure to remain operational in the long term, providing high-quality environmental and geophysical data to improve safety and prevention in the Black Sea.

Per Astra ad ISPRA

Italy: from wave data to safer seas

In 2024, continuing the collaboration that began in 2021 with Siap+Micros, Resinex completed a significant supply of oceanographic buoys for the Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA). This supply aims to strengthen the Italian National Wave Network (RON), essential for real-time monitoring of sea conditions, with a specific focus on wave motion—an element critical for the safety and management of maritime and coastal activities in Italy. The 2024 project saw the installation of 15 state-of-the-art oceanographic buoys, each weighing 500 kg and with a net buoyancy of 1000 kg. Additionally, Resinex provided 330 jumper buoys weighing 3 kg for mooring lines in depths of up to 100 meters. The new installations cover strategic points along the Italian coastline, including key locations for safety and environmental protection, such as Venice, Ancona, Ortona, Monopoli, Crotone, Catania, and others. Thanks to these stations, the ISPRA RON network will be able to provide real-time data on wave direction

and height, essential for managing coastal activities, protecting navigation, and conducting environmental monitoring of marine areas. Notably, a buoy located offshore of Catania recorded a 9.71 meter wave during Cyclone Harry in January 2026, demonstrating the critical importance of continuous wave monitoring in extreme weather conditions.

Each buoy is designed to withstand even the most challenging conditions, as demonstrated in our video showing one of the buoys from the previous supply, installed in 2021. In this event, a strong bora windstorm struck the Upper Adriatic, with waves up to 2.5 meters high, without damaging the buoy (The bora is a strong, cold wind from the northeast, common in the Adriatic region). Once again, Resinex reaffirms its commitment to technological innovation and collaboration with public entities for the sustainable management and protection of marine resources.

From Polar Waters to the Mariana Trench

When it comes to deep-sea diving, the name **Resinex** is inevitably in the spotlight. In 2024 and 2025, our syntactic blocks enabled access to some of the most remote places in the ocean, strengthening our position alongside leading research centers and opening new frontiers for oceanology. In 2024, the **Alfred Wegener Institute** commissioned us to produce 24 syntactic blocks to be installed on a ROV, designed not only to operate at great depths but also to withstand the extreme conditions of the Arctic Circle, among ice and sub-zero temperatures. This unique two-component material demonstrated once again its extraordinary reliability: it withstands extremely high marine pressures and, thanks to its density being lower than water, lightens complex structures such as ROVs, allowing the safe recovery of the machine. Building on a successful collaboration that began in 2020, at the start of 2025 **KC Denmark** once more turned to **Resinex** to produce 36 syntactic blocks, each weighing 44.2 kg and providing a net buoyancy of 18 kg. These blocks were installed on a lander destined for the Mariana Trench, the deepest points in the Pacific Ocean. The Danish company chose **Resinex** with the confidence of finding a trusted partner, capable of meeting all the requirements of such a complex project. Thanks to these collaborations, Resinex reaffirms its role as a global benchmark for marine applications and research, guaranteeing safety and robustness even under the most extreme conditions known to humankind.

RESINEX

From ocean to space

Resinex has recently contributed to a crucial project in the field of the oceanographic research. Del Mar Oceanographic (DMO) secured funding from the Jet Propulsion Laboratory (JPL) to utilize the Wirewalker profiling system. The goal was the calibration and validation (Cal/Val) of NASA's new Surface Water and Ocean Topography (SWOT) satellite. DMO provided the Wirewalker system, while the data processing required for satellite calibration and validation, as well as the deployment and recovery of buoys, were entrusted to various research groups, among which were the Multiscale Ocean Dynamics (MOD) and the Ocean Time Series Group at the University of California, San Diego, in addition to JPL staff.

The Wirewalker was installed on four Resinex buoys, positioned in the Pacific Ocean's area known as Point Conception, characterized by highly turbulent ocean conditions. Consequently, the buoys were designed to withstand adverse weather conditions, ensuring data collection continuity even in extreme atmospheric conditions, with a buoyancy of 750 kg and a maximum diving depth of 300 meters.

The buoys were deployed in February 2023 and, after 200 days, were successfully recovered. The Wirewalker conducted its measurements in the first 500 meters of depth, providing invaluable data for oceanographic research.

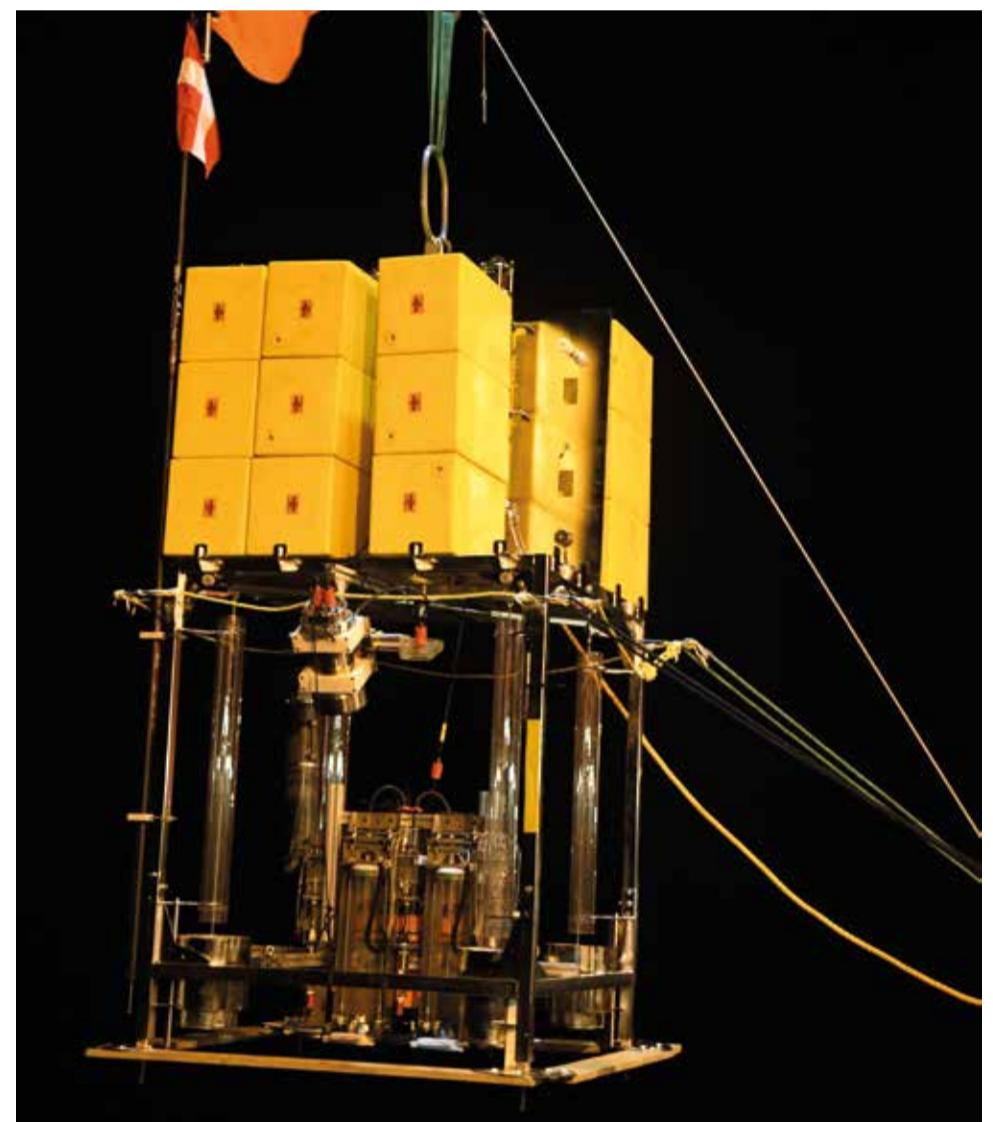
Instrumental buoys at Šibenik Port

The MIMOSA project, a cross-border cooperation initiative between Italy and Croatia funded by the European Union, has issued a tender for the purchase of two instrumental buoys on the Dalmatian coast, near the Šibenik Channel, the gateway to the city of Šibenik. This channel sees the daily transit of around 1,800 vessels during the summer season.

Managed by the Port Authority of Šibenik, the tender aimed to procure two instrumental buoys with a sensor system for measuring various meteorological data necessary for regulating the safe transport of passengers in the port. The Resinex type FP 200 buoys were evaluated as the best choice to meet the needs of the port authorities and they were deployed at the beginning of 2023 summer. In addition to meteorological data, the sensors on the buoys can also detect pollutants and foresee their possible geographical spread, considering sea currents and wind direction.

Again in the ultra-deep abyss

In March 2023, the University of Southern Denmark (SDU) chose Resinex once again, purchasing 24 syntactic foam blocks capable of reaching a depth of 11,500 meters. These blocks will be used to explore the Japan Trench, which reaches a depth of 8,000 meters in the northern Pacific. Each block weighs 44.2 kg, with a net buoyancy of 18 kg.

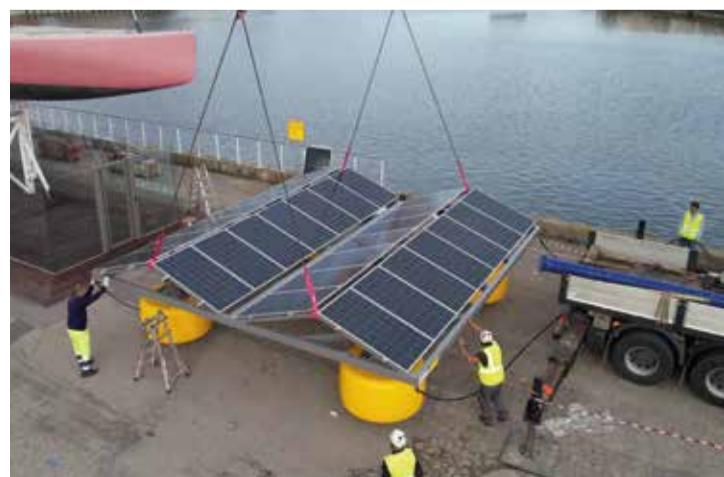

The synergy between Resinex and the Danish university is long established. In the context of the HADES research project, SDU, in collaboration with the Tokyo University of Marine Science and Technology, selected Resinex as a key partner to assist the explorations in the world's deepest abysses.


The initial expedition, taking place at the end of 2016 in the Mariana Trench, saw Resinex providing 10 syntactic foam blocks resistant to pressures up to 1,150 bar.

These blocks were subjected to rigorous tests at the Resinex Marine Research Centre and were subsequently retested in Japan at the Japan Agency for Marine-Earth Science and Technology, passing all tests successfully.

Subsequent expeditions focused on other oceanic trenches, including Kermadec (2017) and Atacama (2018) in the Pacific, highlighting the importance of Resinex's foam blocks in exploring oceanic depths as the only highly reliable product capable of reaching such extreme depths.

The relationship between Resinex and the University of Southern Denmark is just one example of a long-lasting cooperation in this specific field. Over the years, Resinex has supplied major international research centers, such as the Dublin Institute for Advanced Studies (DIAS) and the National Institute of Water and Atmosphere Research (NIWA) in New Zealand.


Three years at a depth of 6000 meters, under the Indian ocean

NIOT (National Institute of Ocean Technology), an autonomous organization under the Ministry of Earth Sciences of the Indian government, has a dedicated plan for the installation and maintenance of instrumental buoys in the Indian seas to collect meteorological and oceanographic parameters (Met-Ocean). This buoy system consists of a surface buoy equipped with a set of sensors in the mooring line, anchored in deep-sea using a single-point mooring system. Resinex is contributing to this project by providing 15 support buoys, each with a net buoyancy of 170 kg, capable of reaching depths of up to 6000 meters. Their purpose is to maintain the stability of the surface buoy, ensuring that the oceanographic sensors are at the right depth to obtain precise technical data. Thanks to the remote anchoring system, these support buoys are replaced annually by new ones, simply by releasing the anchorage and retrieving them to the surface. This replacement cycle lasts three years, ensuring that NIOT continues to benefit from the latest innovations in the field of Marine Technology and has access to state-of-the-art buoys.

Furthermore, the high-quality Resinex product ensures the buoys are secured at depth without any maintenance, reducing the need for underwater interventions, thus promoting the conservation of the marine ecosystems and lowering costs.

The New Floating Energy

Resinex has recently supplied PEM 18 X 680 CIL floats to Agnes, an Italian company specialized in the renewable energy sector, for a floating photovoltaic panel project.

With a diameter of 1800 mm and a net buoyancy of 1540 kg, these floats represent the foundation on which the photovoltaic system will operate in an offshore environment.

The prototype, installed in the Caniano Canal in Ravenna during the OMC exhibition, is going to be transferred to Venice shortly, near the Trezze island, within the port area, where it will be positioned for a whole year. This extended testing period will allow the collection of valuable data on the system's performance under real conditions and the development of a comprehensive study of its structural behaviours, including the assessment of biofouling formation on the floats, contributing to a deeper understanding of this innovative technology.

Indeed, these offshore photovoltaic panels are part of a larger project called the AGNES project, which aims for the widespread implementation of this floating photovoltaic technology. It envisions the construction of the largest European wind farm in the Adriatic, incorporating a mix of energy sources, including photovoltaic and hydrogen.

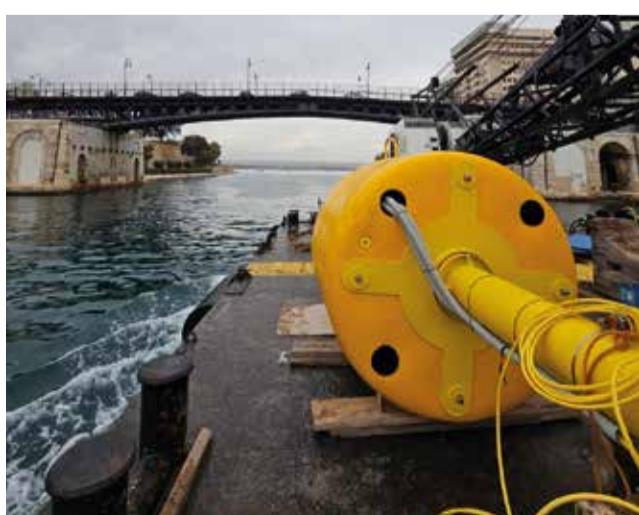
Safety in the Port of Livorno: even the wind is useful

The ICAMPUS consortium, focused on innovation in the field of Information and Communication Technologies (ICT), has established a collaboration with Resinex to develop an advanced instrumental buoy for specialized measurements and for monitoring water conditions in the port area of Livorno. The buoy is characterized by a diameter of 1800 mm and a net buoyancy of 1150 kg. It features a significant innovation: in addition to solar panels, it is equipped with wind turbines to ensure the necessary energy sustainability for the operation of its devices. Besides providing the buoy, Resinex has supplied all the mooring elements.

The instruments embedded in the buoy include a wave sensor for wave measurements, a hydrophone with an array of hydrophones for vessel tracking, and an optics fiber sensor to detect pollutants in the water.

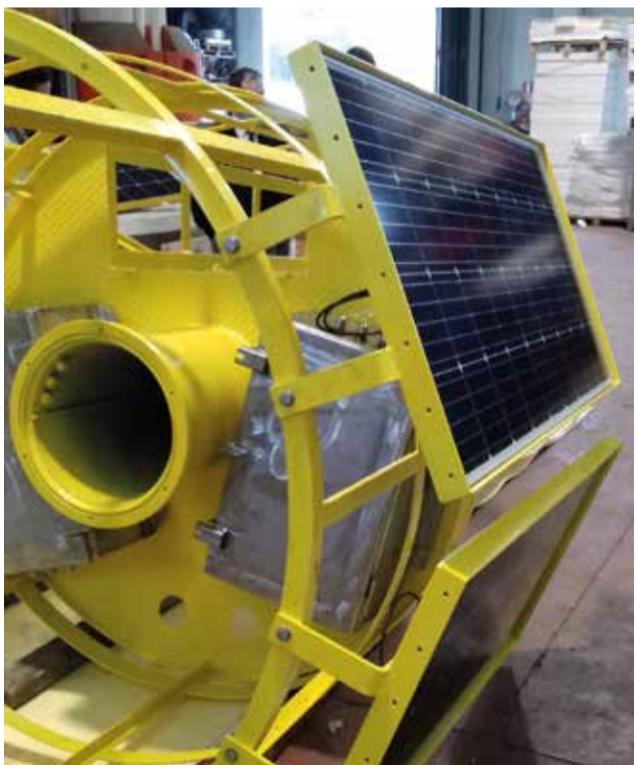
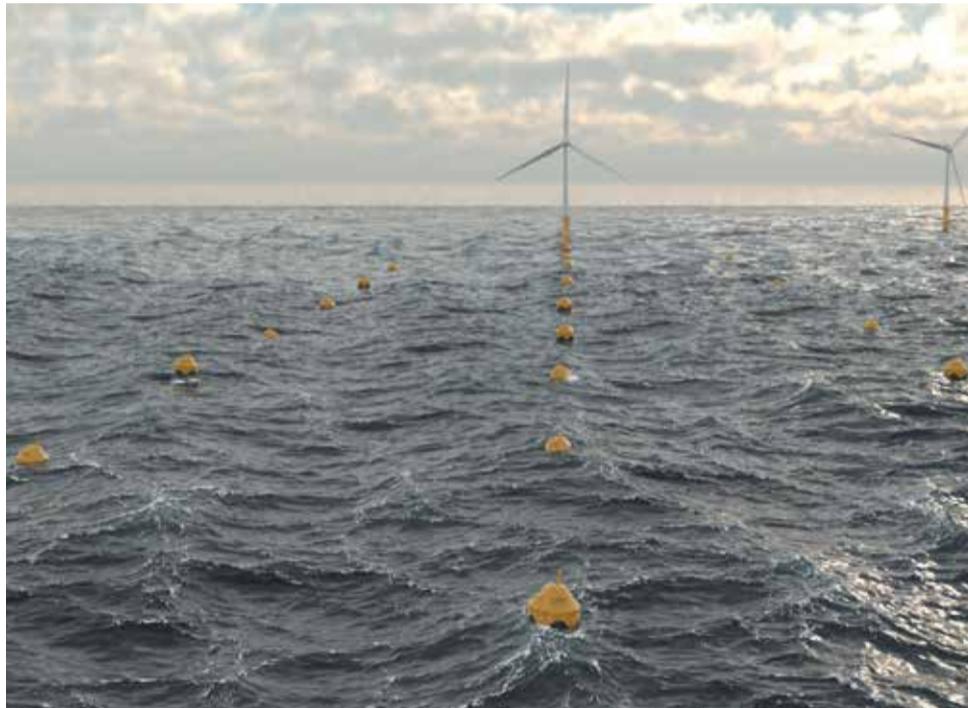
Resinex and Codevintec together for environmental monitoring

At the end of 2022, the Puglia Region concluded a significant tender for the acquisition of cutting-edge instrumentation and equipment under the “Interreg V-A Greece-Italy” program, co-financed by the European Union.

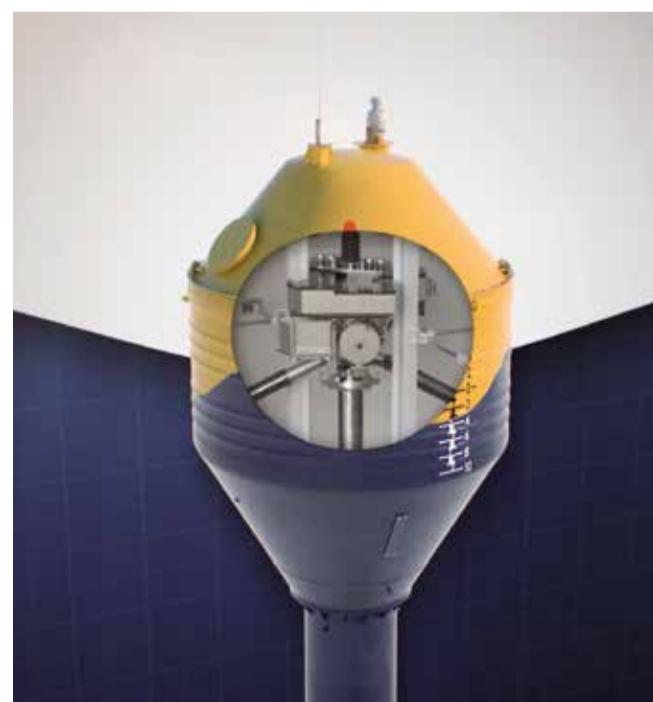
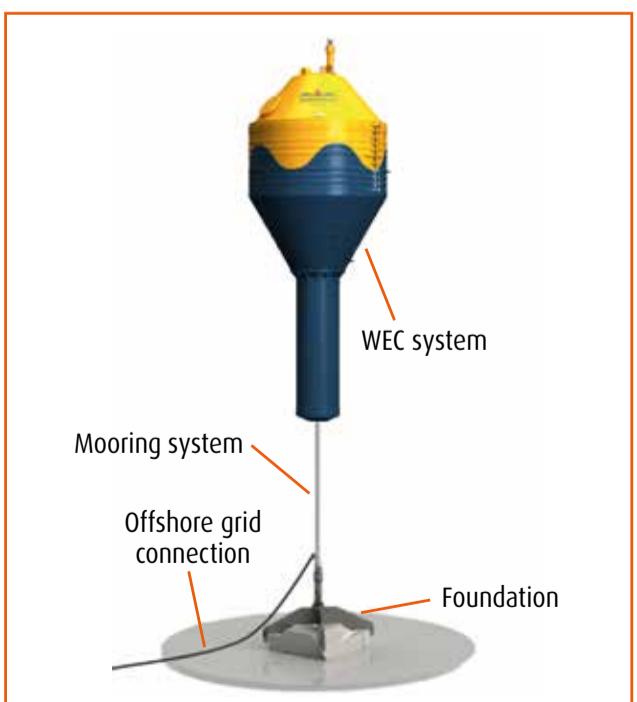

This project, named BEST, was adopted by the Department of Environment, Landscape, and Urban Quality of the Puglia Region, with the objective of conserving and protecting the environment, as well as developing innovative technologies to enhance environmental protection and the efficient use of resources.

The contract in question was dedicated to the supply and installation of an oceanographic buoy within the picturesque Regional Natural Park of Mar Piccolo, in Taranto, and was awarded to the company Codevintec, which collaborated with Resinex.

On the robust structure of a Resinex FP 2300-type light instrumentation buoy, with a net buoyancy of 2400 kg, Codevintec installed its own sensors:



1. CTD Probe: Measures the temperature, conductivity, depth, and salinity of seawater, providing essential data to understand marine dynamics.

2. Optical Dissolved Oxygen Sensor: Paired with the CTD probe, it monitors the level of oxygen in the water, a critical indicator for the health of marine ecosystems.
3. Combined Fluorimeter and Turbidimeter: Measures chlorophyll and turbidity, providing vital information on water quality.
4. Submersible Scalar Sensor: Monitors solar radiation for chlorophyll photosynthesis, crucial for understanding the life cycle of aquatic plants.
5. Doppler Profiler: Provides data on the direction and speed of marine currents, essential for understanding water movement dynamics.
6. Weather Station: Measures wind speed and direction, air temperature, and humidity, in addition to providing GPS and altitude data, offering a comprehensive overview of meteorological conditions.
7. Underwater Camera: Allows capturing detailed images and videos of the underwater environment, providing valuable visual information.

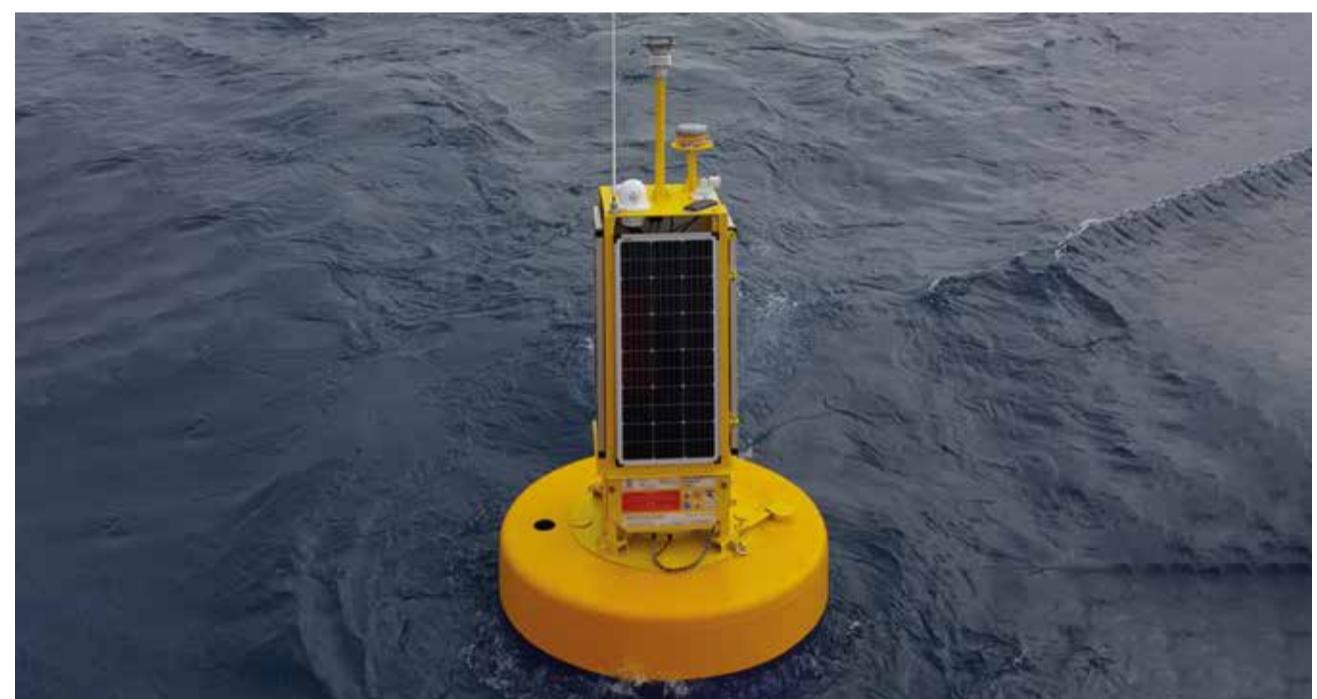
RESINEX

An elastic beacon in Portugal for an innovative CorPower project

CorPower Ocean is a leading wave energy technology developer and it has repeatedly relied on Resinex experience over the years for the realization of its activities in the field of oceanology. Particularly, Corpower is carrying out a project in Portugal, near Viana do Castelo, at a depth of 45 metres. Corpower is developing the WaveBoost project to allow wave energy converters (WECs) to operate safer and more reliably in harsh ocean conditions while increasing annual electricity production. For this reason, the company asked Resinex the supply of an elastic beacon equipped with a support for a control video camera. The camera is used to control the WEC's activity and it shares its video using Fiber Optical communication, located on the sea bed.

It is not coincidence that CorPower relied on Resinex for the supply of the elastic beacon, since we are the major experts in this field. So, customers often ask us to design elastic beacons for particular uses, such as in CorPower case, since we are experts in the elastic beacon production.

US Navy and Resinex again



In 2020 Resinex produced a support buoy for its customer PICCI, a private U.S. marine technology engineering company, and needed by the U.S. Navy (NAVFAC, Naval facility Engineering Command). PICCI installed the buoy on 30th of June 2021 in St Clemente Island, California, in order to use it for acoustic measurements at a depth of 100 fathom. The buoy has a net buoyancy of 3180 kg and a diameter of 2.1 meters. It is made of a linear polyethylene skin. A test of 12,5 tons was carried out to make sure the metal part had the right traction. This collaboration follows a successful project that dates back in 2012 when Resinex supplied NFESC (US Navy) with four buoys for underwater use in the Atlantic ocean.

Nine instrumental buoys for Italian seas monitoring

During the first months of 2021, Resinex contributed to the installation of an important wave motion's detection system along the Italian coasts by providing 9 instrumental buoys PEM 18 and 190 spherical buoys RS2. The goal is to collect data to guarantee Italian seas' security. Monitoring buoys have been custom-designed and they are equipped with a multi-parameter sensor to monitor water's temperature and salinity variations, a weather probe and a wavemeter. Moreover, the buoys are equipped with a camera, a self-powered sea light, a GPS antenna, 4 solar panels and an automatic identification system. Instrumental buoys' diameter is 1,8 metres and the net buoyancy is 1100kg. The structure is compact and it is made of plastic and stainless steel in order to guarantee a long service life and it requires minimum maintenance. It is also easily managed during handling phase. Finally, each buoy also has 20 small spherical buoys RS2 tested at a depth of 100 metres, which are used in the mooring system.

Third elastic beacon to monitor Stromboli volcano activity

In June 2021 Resinex supplied the University of Florence with the third elastic beacon. It replaces the one previously provided and it is located off Stromboli Island. The beacon is equipped with a broadband hydrostatic pressure sensor, an hydro-acoustic located at a depth of 14 metres, a GPS and two tilt meters. The elastic beacon has to measure the submerged flank's stability of the Volcano, the so called Sciara di fuoco, and monitor the occurrence of tsunamis. The system is able to record the collapse of a part of the Volcano, which could cause a tsunami, and it sends an alarm to the nearby islands to inform the civil protection and secure the inhabitants and tourists. So it is a national security system.

Compared to the previous beacon, this one is characterised by a 12.5 meters focal plane so that it didn't go under the highest waves documented by the customer.

Infact, in this area waves reach 18 meters of height, measured from the hollow to the crest of the wave. The 27 tons body wasn't supplied by Resinex, but we gave advise about how to build it. It is made of two blocks: the lower one is flat with a central column, while the upper one is made up of a square shaped "donut". The central column slips into the hole during the installation to make it easier. The deadweight is connected by an anti-twist cable and the lighthouse is anchored approximately 200 meters off the cost and at a depth of 43 meters.

RESINEX

Wave power for the future of energy

Resinex supplied the Danish company Wavepiston with floaters and oceanological buoys to realise an innovative project in Gran Canaria, more precisely in PLOCAN (Oceanic Platform of the Canary Islands), south of the port of Las Palmas. It consists of a light, flexible but at the same time sturdy structure, low-cost and non-intrusive. This structure is used both to produce energy and desalinate water. Oceans' waves energy is renewable and it can be used to produce electricity, desalinate water and other activities. It is the biggest resource of marine energy and its use has been increasing fast in the last few years because of its potential and availability. In the last few years, the danish company Wavepiston relied on Resinex's experience to implement its projects in the field of waves energy, both in Denmark and Spain. Specifically, recently 46 floaters and buoys and 7 deep water floats have been bought for a full-scale demonstrative project at PLOCAN in Gran Canaria.

Dublin Institute underwater research Resinex's syntactic blocks at 6000 metres depth

At the end of 2020, Resinex supplied the Dublin Institute, more precisely the Galloway University research centre, with 14 floating syntactic blocks for a research project carried out at 6000 metres depth in the Atlantic Ocean. The blocks have a net buoyancy of 22 kg, they are 6000mm tall and the diameter is 458mm. The blocks are filled with linear polyethylene and foam polyurethane. Finally, the blocks have to support a 40 kg robot that conducts underwater surveys. It isn't the first time that the DIAS (Dublin Institute for Advanced Studies) is supplied with Resinex products. In fact, already in 2019 Guralp, provider of seismic instrumentation and monitoring systems, asked Resinex to supply some syntactic floats for an innovative project on earthquake and tsunami early warning for their final customer: the DIAS.

Remotely Operated Vehicle at 2000 metres depth

In 2021 Resinex produced 8 buoyancy blocks for an important customer's research project at a depth of 2000 metres. The customer is Rovop, company which deals with providing high-performance resources for exceptional subsea operations. Indeed, the acronym ROV stands for Remotely Operated Vehicle and it indicates a vehicle which works underwater and that often needs to be lightened. ROVs are usually used to make underwater observation and they send data to the crew on the surface. In this occasion, Resinex supplied Buoyancy blocks type 650 x 600 x 22 mm, that weighs 56kg and have a net buoyancy of 31 kg. The blocks are characterized by a shell made of linear polyethylene and they are filled with Resinex syntactic foam.

RESINEX

Resinex Cable risers for a Chinese research project

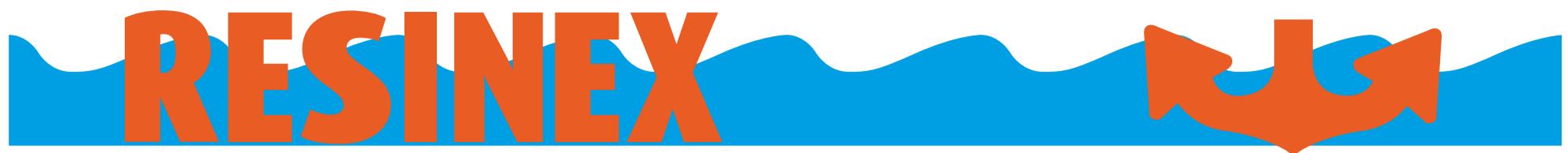
Cables, ropes and umbilicals often need special floats to be lightened under water, that's why Resinex offers a complete range of floats that guarantee functionality and high pressure resistance and they can be placed to whatever depth, depending on the customer needs.

In this regard, the Chinese-Canadian company Seaward Technologies relied on Resinex professionalism asking for the supply of 75 cable risers for underwater equipment use. These cable risers have been used on a research vessel to carry out an important research project. Resinex projected a new type of cable riser, expanding its range, in order to meet the customer's specific needs.

The measures of the new cable risers are 350 x 500 mm, the internal diameter is 20-100 mm and they have been placed at a depth of 2000 metres.

Resinex cable risers: a wide range

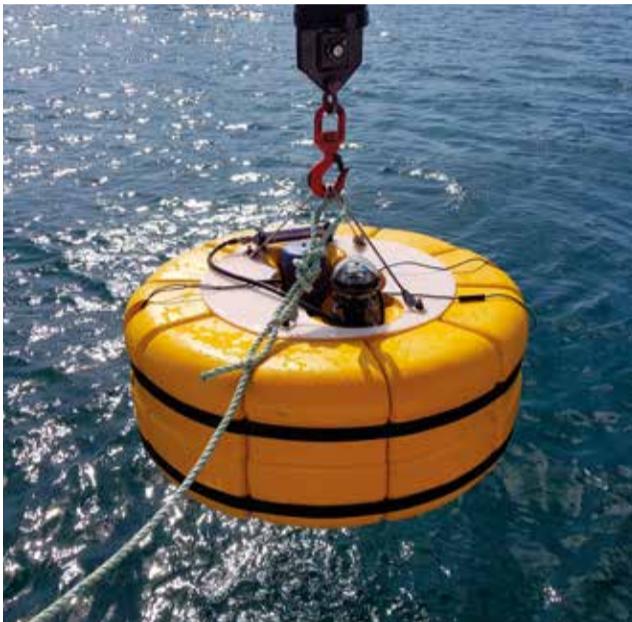
TYPE	MEASURES			UNDERWATER NETT BUOYANCY			
	E Ø (mm)	I Ø (mm)	L (mm)	0-100 m	100- 600 m	600- 1000 m	> 1000 m
	540	30-114	800	145	100	80	68
	450	65-190	550	50	33	25	21
	420	20-100	600	44	30	23	19
	420	30-114	800	82	57	45	39
	350	30-60	600	44,5	30,5	23,5	19,5
	350	30-60	400	28	20	15,5	13,5
	350	20-100	500	28	20,5	16,5	14,5
	150	15-60	300	2,2	1,6	1,3	1,1


Buoys and cable risers for Calwave

In 2021 the American company Calwave, which produces energy from wave motion, has repeatedly relied on Resinex's experience for the supply of the necessary material for the realization of its projects in San Francisco, California.

Particularly, in the first months of 2021 Resinex supplied Calwave with 15 cable risers type D. 420 x 600 mm. These cable risers weighs 13 kg and they have a net buoyancy of 45 kg. Moreover, the can reach 25 metres depth.

Few months later, Calwave asked again Resinex to supply 4 buoys type E5 x 500 CI and the final destination was San Francisco, again. The buoys' shell is made of linear polyethylene and inside it contains polyurethane foam.


Floats for a revolutionary ocean bottom seismometer

In 2019 Resinex supplied Güralp, provider of seismic instrumentation and monitoring systems, with special syntactic floats for an innovative project on earthquake and tsunami early warning for their customer, the **Dublin Institute for Advanced Studies (DIAS)**.

In response to the project requirements Güralp developed **Aquarius**, a revolutionary **ocean bottom seismometer (OBS)** that delivers near real-time seismic data of earth motion from the ocean floor to the surface.

It is the most compact OBS, equipped with an acoustic modem, available in the market. The low profile and compact design is optimized to minimise the noise generated by the current flow.

The syntactic foam floats around the aluminium pressure vessel of the OBS provide the lifting force to bring the instrument back to the surface and it

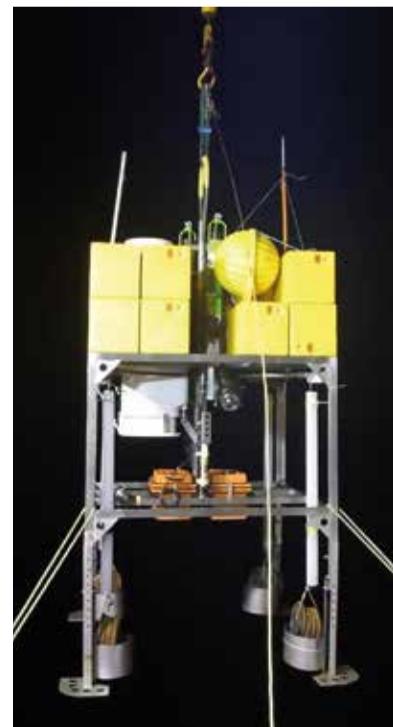
guarantees an **extended life and durability up to 6.000 m** of depth. Resinex supplied more than **40 syntactic floats** for the Aquarius, 10 of which have been used for the DIAS project, the remainder have been used for prototypes and for OBS development for other projects.

How does it work exactly? The Aquarius pressure vessel, that houses the sensor, digitizer and battery pack, is linked to a subsurface acoustic modem located on a weather buoy on the surface.

When the OBS sensor is triggered, it activates the acoustic modem; the surface buoy system then detects acoustic modem activity, collects the data from the OBS, which it then relays to DIAS via satellite modem. DIAS researchers can also send a request via satellite link to the surface buoy system requesting data from the OBS, the buoy then relays the data back to DIAS.

Deepwater buoys for the ESTOC in the Canary Islands

Located in the North of Gran Canaria up to 3.600 m of depth in the Atlantic Ocean, the **ESTOC (European Station for Time series in the Ocean)** has been monitoring the ocean for 25 years, contributing to many international programmes related



to the ocean observation. It monitors meteorological, physical and biogeochemical data that are highly relevant with reference to the studies on the impact of the climate change, a topic that has becoming more and more relevant: international organizations are continuously asking for a global and stable ocean observation, both in the ocean surface and in the water column. Resinex has played a role in this important project thanks to its long experience as a manufacturer of floats for deepwater applications: 2 **subsurface buoys** rated to a depth of 500 m and 2 **ultra-deep-water buoys** rated to a depth of 3.700 m, with a net buoyancy of 200/225 kg and **filled with syntactic foam**, were supplied to Plocan (Plataforma Oceánica de Canarias – The Oceanic Platform of the Canary Islands), the scientific infrastructure in charge with the project, between 2018 and 2019. They are now part of the deep ocean mooring system operated by Plocan at the ESTOC observatory.

6000 metres depth for Niwa's research project

In 2018 Resinex supplied NIWA, National Institute of Water and Atmospheric Research of New Zealand, with 30 half syntactic foam blocks to carry out a research on the resilience of deep-sea benthic communities to the effects of sedimentation, at a depth of 6000 metres. That was the first time these landers had been used, and the result has been a complete success so that Niwa, in 2021, decided to rely again on Resinex experience asking for the supply of other 8 syntactic foam half blocks to carry out other research projects. It is a source of satisfaction when customers are satisfied with Resinex's work, and it is a pleasure for the entire team to build relationships with customers and meet their needs whenever they need it.

Instrumental elastic beacon in Tuscany

At the end of 2019 Resinex supplied Siap+Micros with one instrumental elastic beacon for environmental monitoring to be placed in the Gombo site in the north of Marina di Pisa (Tuscany), around 1 mile from the coast. The aim is the measurement of direction and speed of sea currents and the monitoring of wave motion. The project is managed by Regione Toscana, the administrative authority of the Italian central region. The instrumental beacon reaches the depth of 13 m and is equipped with all the devices for data collection and transmission. The structure has an ample space on the tower and it's notably stable. This guarantees a monitoring accuracy that can not be reached with traditional buoys: the beacon actually replaced some instrumental buoys installed years before.

Safe mooring in the Bahamas

Ocean buoys for marine condition monitoring

Ocean Cay, part of the Bimini islands in the Western Bahamas, has been recently transformed from an industrial sand excavation site into an extraordinary marine reserve, with the aim to revitalize the surrounding marine life and be an unmissable attraction for tourists. The company responsible for the transformation is MSC Cruises, that now owns the island and considers it one of the best destinations in the Caribbean Sea. Thanks to the cooperation with Wärtsilä APSS, Resinex has recently taken part in the **Ocean Cay project** and has made an important contribution to its success. At the end of November 2019, **5 Resinex oceanographic buoys** have been supplied to Wärtsilä APSS (with **MSC as final client**) and then installed around the entrance channel that leads to the port of Ocean Cay, where cruise ships bring every day thousands and thousands of tourists from all over the world. The

buoys are powered by solar panels and equipped with a current profiler that **collects speed and direction of the sea currents** every metre over 10-metre water column. All this information is transmitted every 30 minutes from the buoys to onshore thanks to a radio telemetry system and then shared to the ship's control rooms. Resinex furnished **not only the hardware components but the software too**, offering the most complete package possible. Additional meteorological measurements such as temperature, wind direction, wind speed, along with pressure and humidity of the air are performed on the lighthouse of the island and transmitted. All these data allow to coordinate operations and manoeuvres of the ships in the best possible way, according to sea and weather conditions, **preserving the safety** of passengers and of the crew on board. Installation works started at the end of November

2019 and were completed quickly, despite the bad weather conditions: the first cruise ship was moored at Ocean Cay on December 5.

Instrumental buoys: small is beautiful

Along with the large oceanographic buoys, Resinex can manufacture **smaller instrumental buoys** usually used for monitoring purposes in lakes, port areas and shallow waters in general.

In search of innovative monitoring tools, in 2019 Corr-Tek required 4 instrumental buoys with a net buoyancy of 76,5 kg in order to implement the live water quality monitoring, with the aim to maintain the natural ecosystem and facilitate the sustainable growth of the Mincio River Regional Park (Mantua, Northern Italy).

In the same year, Colmar installed 3 Resinex buoys for environmental monitoring in the port area of La Spezia (Liguria, Northern Italy). The buoys were equipped with a multi-parametric CTD probe and a data acquisition and transmission system. Oxygen concentration, turbidity and pH of water were the main monitored parameters.

Other companies that Resinex has recently supplied with small instrumental buoys are the Italian Apphia and Biosurvey, an academic spin-off of the University of Palermo specialized in advanced technologies applied to aquatic systems.

An environmental monitoring station in Lake Garda

The University of Brescia has recently requested spherical and cylindrical buoys for the creation of a fixed floating station to be placed in Lake Garda, close to the Natural Park of Manerba. The aim is the real-time measurement of air temperature and humidity, wind speed and direction, solar radiation and temperature of the water column. The station is composed by a section emerging from the surface for about 2 m, where meteorological sensors are housed. The support column, that dives in for about 6 m of depth, is connected to the floating system composed of 4 floats. Moreover, 2 surface and 2 subsurface buoys allow compensation when the water level changes. The submerged part of the station is composed of a chain of 12 thermistors and an oxygen indicator. A data logger connected with a modem and an antenna for the data transfer via GPRS is placed just below the water surface.

RESINEX

ESTOC station, 3.700 m WD

Geomar, Expedition SO242-2, 6.000 m WD

NIOT, 3.000 m WD

University of Southern Denmark, Hades Project, 11.000 m WD

INGV, EMSO MedIT Project, 6.000 m WD

LOCEAN, 3.000 m WD

25 years of sy
for oceanogra

High resistance up to 11.000 metres of depth

Resinex started manufacturing syntactic foam buoys in the early 1990s: after years of research and experimentations, it succeeded in creating the perfect compound suitable for floats that have to reach the deepest areas of the oceans.

The specific composition of Resinex syntactic foam allows the **underwater use up to 11.000 metres of depth**, where a high resistance to pressure and to different external factors are necessary: even the deepest point of the ocean is within our reach.

The key points are a very **high strength of the material** and a **zero water absorption rate**. The excellent performance of Resinex syntactic foam modules is always confirmed by the routine quality tests carried out at Resinex Marine Research Centre in Adro (Brescia).

The quality tests are essential, as Resinex always looks for improvement and product refinement. Another company's key point is the excellent **versatility**: Resinex can customize the syntactic floats according to the specific application and the depth of positioning.

Syntactic foam buoys are mainly requested in Oceanography and also in the Oil&Gas Industry. In O&G, Resinex floats are used for anchoring, medium and long-term positioning of submarine structures and pipeline installation at different depths.

After the first medium-small projects in the 1990s and early 2000s, Resinex acquired the necessary experience to deal with the major projects all over the world.

Resinex synt 1000 at electronic microscope

Resinex synt 1000 at electronic microscope

Tanks for hydrostatic pressure, hydrostatic crush and net buoyancy tests

RESINEX

Syntactic foam oceanographic projects

Resinex's Oceanography: an overview

Resinex supplies syntactic floats for Oceanography, both for business activities and scientific studies, where floats' application depth can be up to 11.000 metres. Projects are usually related to sea and environmental monitoring, tsunami warning and seabed studies.

The British company **Sonardyne**, the world market leader in underwater positioning, has been cooperating with Resinex for more than 20 years, asking for high performance floatation collars for its range of subsea acoustic transponders.

Through the years, **iXBlue** often required float collars and spherical buoys too, for the deployment of acoustic releases.

Resinex supplied **PLOCAN** with syntactic foam floats for the **ESTOC station** in the Canary Islands, a point of study and monitoring of oceanic activity.

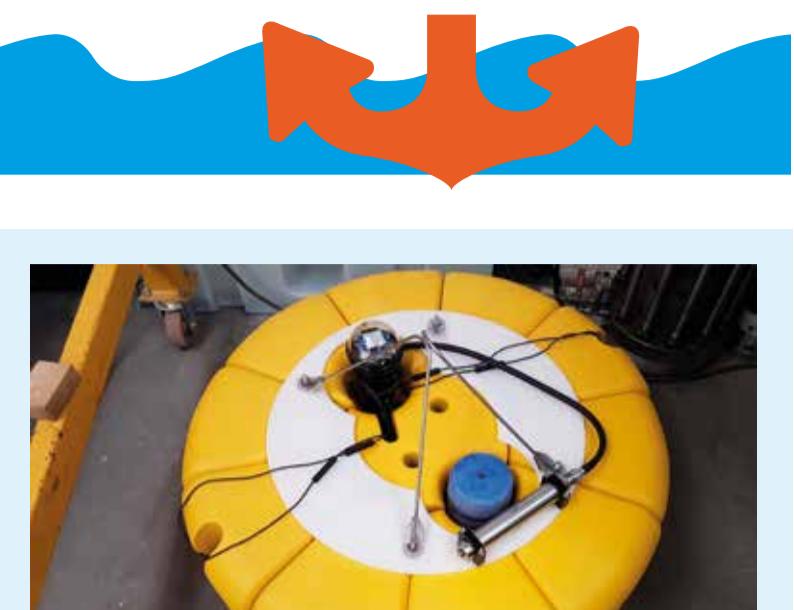
Over time, also **Güralp** has often required special syntactic floats for a wide range of projects related to studies on earthquake/tsunami warning and ocean monitoring.

Among the most important Italian customers in the scientific field we can mention the **National Institute for Nuclear Physics (INFN)**, that carried out a study on high energy neutrinos by placing a submarine telescope on the seabed in the Mediterranean Sea (**NEMO Project**), and the **National Institute of Geophysics and Volcanology (INGV)**, that required different special floats for the enhancement of multidisciplinary marine research infrastructures in Southern Italy (**EMSO MedIT Project**). The cooperation with universities has always been really frequent.

Deep water buoys were delivered to the **University of Azores**, ordered by the Department of Oceanography and Fisheries: they were positioned off Ponta Delgada in the island of San Miguel as a support for the study of ocean currents and fish movements in the area.

The **University of Naples "Parthenope"**, in Southern Italy, requested deep water buoys too.

Another recent noteworthy project is certainly the one carried out for the study of deep-sea ecosystems by the **University of Southern Denmark (HADES Project)** in the Mariana, Kermadec and Atacama trenches at a depth of 11.000 metres.


A similar project has been held by the **National Institute of Water and Atmospheric Research - NIWA** (New Zealand), that required syntactic modules to perform an experiment on the resilience of deep-sea benthic communities to the effects of sedimentation.

Through the years, also German scientists have often chosen Resinex's quality: the German institute **Geomar** required syntactic foam modules and floats for the **SO242-2 Expedition** in South America, in order to guarantee buoyancy for two elevators used to transport ROV-modules, sampling and experimental gears to the seafloor and back to the surface. The **Leibniz Institute**, one of the most prestigious European research institute, asked for various Resinex syntactic foam blocks for innovative experiments in ultra deepwater. Other German relevant clients are the **Alfred Wegener Institut** of Bremerhaven and the **Max Planck Institute** of Bremen.

As for Asia, one of the most relevant Resinex's client is the Indian **National Institute of Ocean Technology - NIOT**, that over the years has required hundreds of umbilical cable floats, cable risers and support buoys for various deepwater projects.

A dozen cable floats were also manufactured for **LOCEAN**, the **Laboratoire d'Oceanographie et du Climat** based in Paris.

Resinex is proud of having participated in some of the most important oceanographic projects all around the world, consolidating year after year the partnership with a wide variety of companies, institutes and universities.

GURALP, 6.000 m WD

NIWA, 6.000 m WD

Sonardyne, 3.000 m WD

INFN, Nemo Project, 3.500 m WD

University of Azores, 500 m WD

iXBlue, 3.000 m WD

Instrumental elastic beacons

Resinex invented the elastic beacon in the 1960's. Through the years Resinex has projected innumerable applications for the beacons, adaptable for the most diverse usages (from signalling to environment control) in all sea conditions and of any depth. The elastic beacon is a semi-rigid structure with a metallic pole of variable length, fixed to the bottom by a concrete weight. The pole is kept vertical by a very big submerged float which can have various shapes and dimensions, according to the different

sea conditions. Normally, the elastic beacons are equipped with a tower which is able to host at least two operators. The structure is extremely stable: this permits a high level of precision and monitoring unobtainable with alternative support systems such as traditional buoys. The particular characteristic of the Resinex elastic beacon makes it the ideal support for the instruments necessary for a correct and constant monitoring of the marine environment.

South Korean Western Coast: high reliability in extreme conditions

Resinex has accepted the challenge to supply elastic beacons which withstand extreme meteorological marine conditions.

After the supply of 3 instrumental elastic beacons in 2015, installed in the South Korean Eastern Coast, in 2017 Resinex has replayed with the manufacturing of further 3 big elastic beacons for monitoring, destined to the Western coast (Yellow Sea).

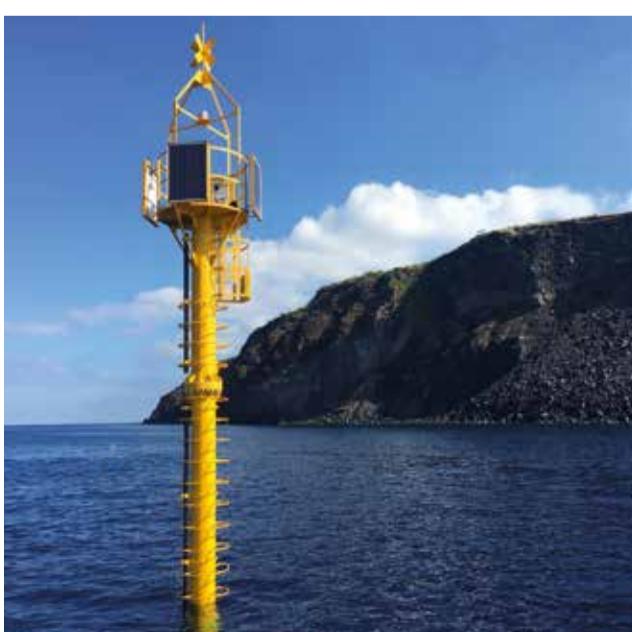
The South Korean Western Coast is known to be subject to extreme tides and typhoons.

Kigam (The Korean Institute for Geoscience and Mineral Resources) contacted Resinex to have the best support for the geophysical research and monitoring activities.

During the initial phase of the project, Resinex technical department received from Kigam real information about the meteorological marine conditions during a typhoon: wave height 11.2 m, wind speed 180 km/h, current speed 4 knots.

Once completed the framework of the technical information, Resinex has ad hoc studied and projected three instrumental elastic beacons with peculiar characteristics. Two types of innovative software have been utilized: Orcaflex and Resinex Tethered Buoy System, specifically developed for Resinex from the Politecnico of Milan.

The intersection of the data coming from the two software programmes of simulation, has allowed to identify the best solution for the given parameters.


Then, ad hoc elastic beacons have been projected with a float of 4.3 m of diameter, 2.5 m of height and 16 tonnes of net buoyancy. Beacons have an average height of 51 m, a focal plane of 14 m to keep the visibility against high tide variations and have been realized for depths of 34.5 m, 34.6 m and 35.5 m.

They are also complete of an upper platform on which the necessary instruments for the monitoring are applied.

The installation in the Yellow Sea has been locally supervised by Resinex technicians.

A second elastic beacon for Stromboli Volcano control

In 2017 the Department of Earth Science of the University of Florence, required a second Resinex elastic beacon to monitor the Sciara del Fuoco, the zone of the submerged side of the Stromboli volcano. The first supply of the instrumental elastic beacon went back to summer 2008, as a mere experimental proposal for the analysis of the activity of the monitoring of the stability of the active side of the volcano, which following the effusive eruption in December 2002, it poured in the sea around 20 million cubic metre, causing an abnormal tsunami wave of 10 metre of height, which reached the Sicily coasts and the Calabria coasts damaging the port of Milazzo and other areas of the Eolie Islands. The experimental phase with the first elastic beacon has met with success and above all, it has represented a turning point for the monitoring of the stability of the active side of the volcano. Through the instrumentations

applied on the beacon, it is possible to provide in real time the parameters of the control of the beacon, the inclination, the height above sea level and the geographical position. Moreover, all the parameters for the meteo-marine characterisation (significant height, wave period, wave movement direction, sea status, water temperature) and the potential tsunami waves produced by the landslide in the water of the emerged and submerged portions of the Sciara del Fuoco. The second Resinex elastic beacon was installed in October 2017 on the other side of the Sciara to have a complete monitoring of the stability grade of the volcano. The two elastic beacons have the main purpose of being "sentinels" and will have the task to automatically transmit and in real time the final alert in case of tsunami. The two elastic beacons are thus the cornerstone of the system of Early-Warning of anti-tsunami for the southern Tyrrhenian sea.

RESINEX

Monitoring buoys and beacons in Jordan, Tunisia and Italy for the S&T Med Project

In summer 2016, respectively in Aqaba (Jordan) and in Mahdia (Tunisia), two Resinex light buoys for instruments were installed, while Resinex instrumental elastic beacon was deployed in Oristano (Sardinia) in 2017.

These supplies have been developed by two Italian companies: Idromarambiente and Bioethic. They are inserted in a wide project of environment monitoring named Sustainability and Tourism in the Mediterranean (S&T Med).

It is a strategic project co-financed by the European Union (through the ENPI CBC Mediterranean Sea Basin Programme 2007-2013) which aims to engage tourists and local communities in environmental monitoring and protection, by increasing their awareness of the values of coastal ecosystems with their associated services and, therefore, proposing an all-out experience of the destinations. This is key to ensure the sustainable development and management in areas where attractiveness depends by and large on the good environmental status of the coastal areas, its biodiversity and habitats.

Resinex buoys provide the necessary support to the instrumentations, which measure the environmental and meteo-marine parameters.

Buoys have a diameter of 2.1 m, a focal plane of 3 m and a net buoyancy of 2500 kg. They are complete of top mark (Saint Andrew Cross) with radar reflector, of a self powered marine lantern (3 NM of range) with solar panels and batteries incorporated.

The instrumentation on the buoys is composed of: weather station to measure wind, air temperature and humidity; submerged multi-parameter probe which detects the sea characteristics such as temperature, salinity, dissolved oxygen, pH, turbidity, chlorophyll, pollution; current meter and wavemeter to take the evolution of currents and the features of the wave-motion.

Buoys are equipped with webcams to provide information on maritime traffic, marine flora and fauna conditions and weather conditions.

The elastic beacon installed in Oristano is composed of a submerged float constituted by two modules in

Aqaba, Jordan

Mahdia, Tunisia

Oristano, Sardinia

linear polyethylene of 2.1 m of diameter filled with polyurethane foam which guarantees a high resistance. It has a focal plane of 5 m with an operative depth of 11.7 m.

As per the light buoys, also the elastic beacon is equipped with a weather station, an immersed multi-parameter probe, a current meter, a wavemeter for the constant survey of the meteo-marine conditions and the transmission of the data ashore.

Thanks to this monitoring activity is possible to provide data on the real time condition of the solar radiation, wave conditions, water temperature, streams; info on climate change (by providing information on temperature and pH); pollution by hydrocarbon

(industrial harbour, vessel tracks, oil dumping, etc.) and organic pollution.

These parameters are acquired in a data logger and are transmitted to the zoological Station "Anton Dohrn" in Naples.

Each target area of the Project (Aqaba, Mahdia and Oristano) is connected to and supported by a local scientific institution that cooperates with the Station "Anton Dohrn" in customizing environmental monitoring to sites' specific features and monitoring needs.

S&T Med project allows the three target areas to enter into a worldwide network of sites which adopt the best environmental procedures through the usage of markers of the water quality.

Wave and Wind control in Portofino

The Port Authority of Santa Margherita Ligure (province of Genoa) has changed the coordinates of the mooring area of the cruise ships which

dock at Portofino. To signal and to create a safe zone for the mooring of the cruise ships, Marina of Portofino required the Resinex cooperation in supplying 2 elastic beacons type PEM 21, equipped with subsurface float with a net buoyancy of 4700 kg and a platform able to host two operators. The elastic beacons are 7 m high on the sea level and are positioned at a depth of 18 m and visible at 4 NM around the horizon. One elastic beacon is complete of a position transmitter for the A.I.S. localisation of the beacon itself, of an anemometer for the detection of speed and direction of surface wind (placed at 7 m from the sea level) and a wave height device with an ultrasound probe.

Monitoring natural hazards in the Black Sea

GeoEcoMar (Romania) has requested Resinex an instrumental elastic beacon for its first major initiative related to a regional early-warning sys-

tem for marine geohazards of risk to the western Black Sea coastal area.

The need to kickstart this activity came from the proven vulnerability of the Black Sea area to the natural extreme events, such as earthquakes, submarine landslides, extreme storms, some of them with a high tsunamigenic risk. The elastic beacon is anchored to the sea bottom at 15 m depth, through a shackle SWL 35 tons, two stabilizing chains, connected to a concrete sinker of 20 tons. The emerged side is a steel platform that can host a high number of solar panels with a top mark, radar reflector and a self contained marine lantern with a range of 4 NM. The focal plane is 6 metres.

RESINEX

Ultra deep blocks at 11.000 metres depth in the Mariana Trench

Resinex, with its wide experience in high depths, has been chosen to support each phase of the important project HADES granted to Prof. Ronnie N Glud at University of Southern Denmark, through the supply of syntactic foam blocks tested at 11.500 metres and used at 11.000 metres of depth to explore the deepest marine habitats on Earth.

The purpose is to analyze the processes responsible for the transport of organic material to the trenches, the mineralization processes in the trench sediments and characterization of the unique microbial communities mediating these processes. This project is 5-years-long and includes various cruises.

The first cruise was at the end of 2016 in the Mariana Trench, located in the Western Pacific East of Philippines, for which Resinex provided 10 syntactic foam blocks rated 11.500 metres. The blocks are rotationally moulded, manufactured in linear polyethylene and filled with Resinex syntactic foam which guarantees resistance at 1150 bars.

The blocks were tested in the Resinex Marine Research Centre with a hydrostatic pressure of 900 bar and then they were tested again by the University of Southern Denmark at 1100 bar in Japan at the Japan Agency for Marine-Earth Science and Technology. All the tests were successful.

The aim of the expeditions is to provide the first detailed analysis of deposition and mineralization of organic material in some of the most scarcely explored regions of the ocean: the deep hadal trenches.

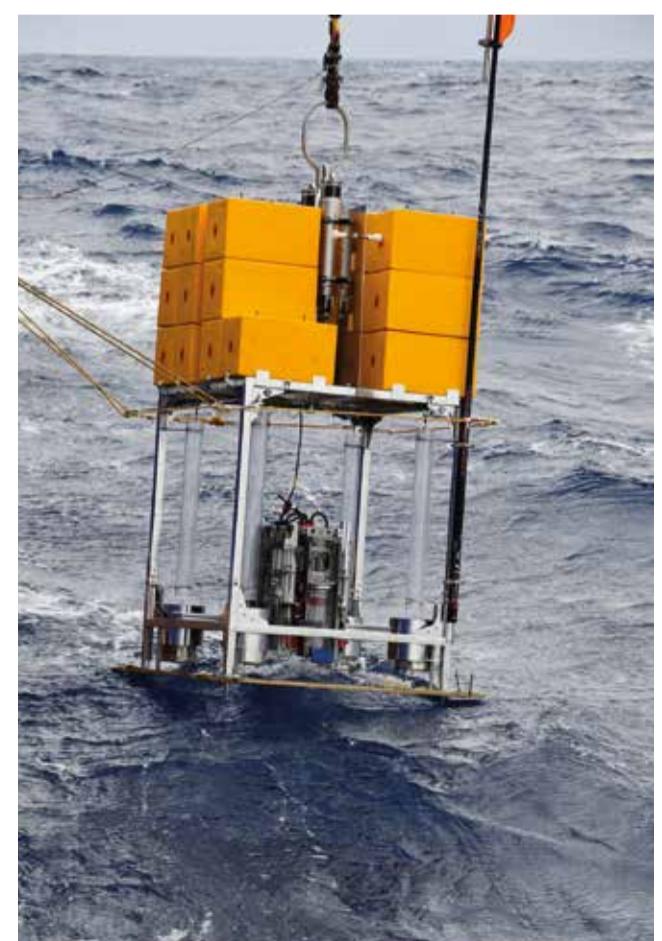
The hadal depth zone reaches from 6.000 metres depth to the deepest sites on Earth at 11.000 metres in the Challenger Deep of the Mariana trench.

The trenches are virtually unexplored, but preliminary investigations suggest that trench bottom represents hotspots for the deep ocean with intensified turnover of organic carbon and nitrogen—presumably mediated by specialized microbes that are adapted to the

extreme conditions at these depths. Given the extreme hydrostatic pressure, recovered biogeochemical and microbial samples are prone to be affected recovery artifacts. Therefore trustworthy measurements have to be realized directly at the trench bottom and microbial samples have to be fixed at depth before recovery.

In Summer 2017 Resinex provided 34 more syntactic foam blocks for new cruises in sites of Kermadec (November – December 2017) and Atacama Trench (March 2018) with a depth ranging from 8.100 to 10.900 metres.

During the research cruise to the Kermadec Trench, north of New Zealand, was carried out a detailed study of the biological processes in the trench using freefalling autonomous instruments. All instruments were equipped with syntactic foam from Resinex.



The instruments were deployed to depths greater than 9000 m and were used to study oxygen distribution in the seabed and recover sediment for ship based studies of biological processes and microbial diversity.

The first preliminary results from the expedition demonstrate that the Kermadec Trench hosted intensified biological activity with a surprising high degree of variability in the metabolic activity among the basins along the trench axis.

In March 2018, the study of hadal trenches will proceed during a research cruise to the Atacama Trench off the coast of Chile-Peru.

The three trenches, Mariana Trench, Kermadec Trench and Atacama Trench, are selected as they underlay waters of very different productivity that ultimately feed the benthic communities and thus represent three different hadal environments.

Apart from the lead partner at University of Southern Denmark, the research team includes researchers from Max-Planck Institute for Marine Science (Germany), Marine Biological Laboratory at University of Copenhagen (Denmark).

Wave energy: the future

Wave energy belongs to the category of the renewable energies and its usage is increasing more and more in the last years. It is a resource of huge availability, high density of energy and stable over time.

Wave energy field needs always buoys of different sizes and various water depths to support the activity of transformation of the wave-motion into electric power. For this reason, the new operators address to Resinex, as with its wide range of products constantly avant-garde, guarantees excellent results in terms of highest versatility, resistance and safety. Resinex has recently provided its experience for wave energy projects in Denmark, Spain and Sweden. The Danish company Wave Piston, in 2016, requested 4 Resinex buoys for the redeployment of its prototype wave energy system off the west coast of Denmark.

Wavepiston's wave energy system has been placed in the waters of DanWEC (Danish Wave Energy Center) testing site on May 11, 2017.

The wave energy prototype is comprised of a steel wire stretched between two anchored buoys which have a net buoyancy of 855 kg. Resinex buoyancy modules have been projected to be used in a horizontal position according to the request of the customer. The buoys are installed over a horizontal metallic structure which supports an automatic system check. Moreover, 120-meter long string has 8 optimized energy collectors planned to be mounted onboard. The device works when waves roll along the wire moving the plates back and forth. The moving plates pump seawater into pipe which leads it to a turbine that produces electricity. The expected output of the prototype is 12kW.

It was developed by a consortium which in addition to Wavepiston includes the Technical University of Denmark, Global Maritime Vryhof and Nurmi Cylinders. In 2016, for the Spanish company Oceantec, Resinex projected and supplied a mooring system composed of 4 buoys for the installation of an energy converter from wave-motion along the coast of the Basque country with a seabed of 90 m. A high resistance of the buoys is fundamental, as these are constantly exposed to strains and immersions by waves which are then transformed from the plant into electrical power.

The projected buoys have a net buoyancy of 3100 kg and weigh 560 kg/each.

In 2015, Resinex developed for Seaflex Energy Systems AB, 3 support buoys type PEM 21 installed near Landskrona in Sweden.

Buoys have a diameter of 2.1 m, a weight of 2020 kg, and a net buoyancy of 7500 kg. They are used at a water depth of 100 m.

Resinex at the Museum

In a period of great emergency, due to the frequent earthquakes which lashed our country, Resinex was invited to be a part of the earthquake exhibition, organized by the Municipality of Milan at the Museum of Natural History. The exhibition was held from the end of October 2016 to the end of April 2017. Resinex was asked to become a scientific partner of this exhibit, thanks to its wide experience in the field of the Oceanology projects, and of tsunami alert.

For this special event, Resinex made a model of Tsunami Alarm Elastic Beacon positioned in a tank, which simulates the wave movements in case of tsunami and earthquakes and its immediate alarm transmission at shore.

Specifically for this occurrence, Resinex realized also a buoy 1800 x 3600 mm suitable to be equipped with sensors for the wave monitoring, which are able to launch in real time alert signals ashore.

Resinex buoys and elastic beacons, in fact, through specific instrumentations (powered by solar panels installed on the elastic beacon tower or on the buoy

body) are able to reveal and to measure different parameters, such as: direction, speed and height of the wave. In case of irregular activity, they can immediately send warning signals. This exhibition on earthquakes has ranged from the anatomy of the Earth planet to the movements of the continents and plate, from the faults and earthquakes to tsunami and cover-drop-hold on prevention to the geophysical instruments, ending with the structural defense from earthquakes and the creation of earthquake proof buildings. Resinex has been chosen to represent the excellence of the Italian manufacture in the field of the sea seismic detection.

Its large experience all over the world, above all in countries with the highest seismic risk, has ensured the creation of models able to faithfully show to everybody the instrumentations nowadays used to control the sea activity.

RESINEX

Great results achieved offshore the Korean oriental coast

1

2

3

Photo 1, 2 and 3: assembly of the lower part at sea. The beacon structure is more than 40 metres long.

Resinex has specifically manufactured for Kigam (the Korean Institute for Geoscience and Mineral Resources), 3 big elastic beacons for instruments. They have been projected taking into consideration simulations using TetherBuoy 2 (a software for the numerical simulation of the dynamics of floating-moored structures), studied by Resinex with the cooperation of MOX (the Laboratory for Modelling and Scientific Computing).

The elastic beacons were manufactured at the beginning of 2015 and delivered in Korea last May, then installed in July 2015 under the supervision of Resinex personnel, offshore the Korean oriental coast in the Sea of Japan, at a depth of 80 metres.

4

The beacons are equipped with a huge turret (2x2 metres), able to host the power system (solar panels and batteries) and the electronic equipment which controls the devices placed on the sea bed by Guralp Systems Ltd, for surveying the geophysical activity and the transmission of data to-land.

Moreover, the beacon structure is more than 40 metres long and it is linked to the seabed through an anti-torsion wire rope \varnothing 52 mm fixed to a concrete sinker of 25 tons.

The 3 beacons are placed at the vertices of a triangle and spaced out 300 metres each other.

Resinex quality and technology have fully satisfied the requirement of the well-known Korean Research Centre.

5

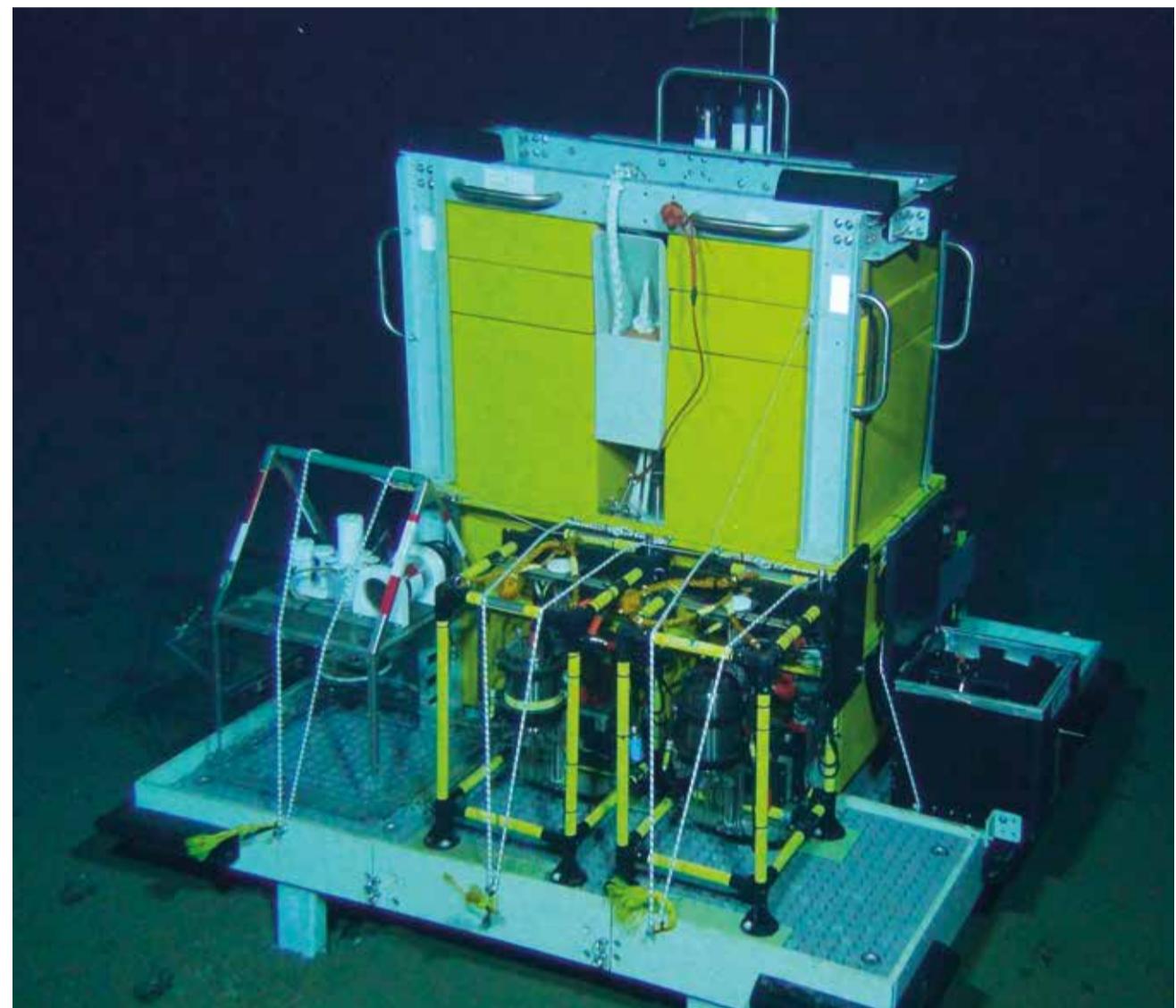
6

Photo 4, 5 and 6: assembly of the upper part, able to host the power system and the electronic equipment.

Elevators in ultra deep water

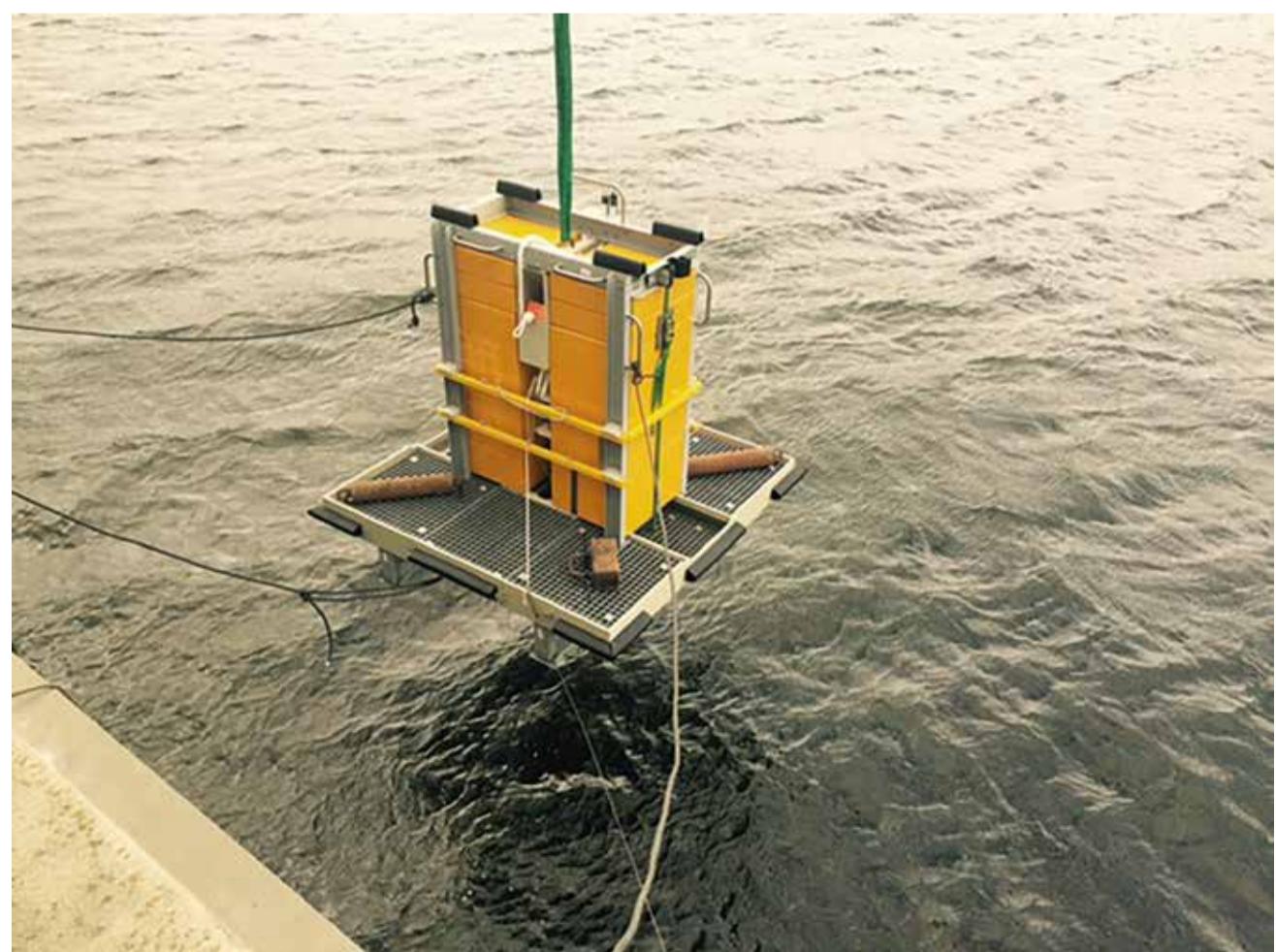
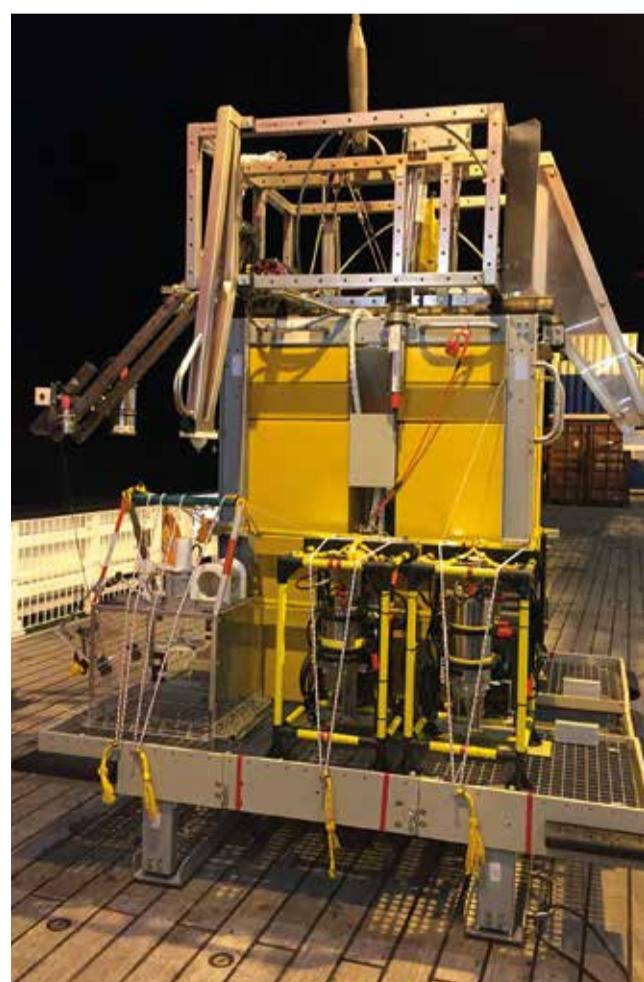
Syntactic foam modules at 6000 metres

Resinex has provided syntactic foam modules and floats to guarantee buoyancy at 6000 m depth for two elevators used by Geomar Institute during the expedition SO242-2 in Ecuador in summer 2015.


The Geomar expedition SO242-2 took place between 28th of August and 1st of October 2015 and led from Guyayaquil, Ecuador, into the Peru Basin in the southern tropical Pacific and back to Guyayaquil.

The two elevators were used to transport ROV-modules, sampling and experimental gear to the seafloor and back to the surface and to increase the efficiency of the ROV's bottom time, during cruise SO242-2. Whereas the first elevator has been used already on several cruises together with ROV KIEL 6000, the second one was newly designed in view of the large number and variety of different modules to be used during this cruise.

Both elevators were equipped with Resinex blocks of syntactic foam for floatation rated at 6000 m depth, with direction finding beacons for location at the seafloor, with dual KUM releasers and manual emergency release with ROV, together with flasher and radio beacon for relocation on the sea surface during recovery by using Resinex floatation line.



During the cruise, various equipment in different combination had to be transported by both elevators, either to be deployed and put back on the elevator by the ROV and/or used mounted permanently on the elevator and filled with samples by the ROV or attracted by bait.

Careful planning was needed to use the available space and payload of both elevators, secure the equipment during descent and recovery as well during ROV operations by the pilots.

In the middle of the elevator a box with a Resinex flotation line is visible, which can be released by the ROV pulling the orange line to facilitate the recovery

of the elevator at the sea surface. Resinex confirms its capacity to produce syntactic foam modules up to 10000 m with ad-hoc shapes for customers.

6000 metres depth for geophysical and volcanic researches

The cooperation between Resinex and the Italian volcano experts is not a new thing. Indeed, our company has supplied various floats from 2010 to 2015. In 2010, as a matter of fact, INGV (National Institute of Geophysics and Volcanology) used Resinex technological support to create floats able to reach high depths and to withstand pressures up to 600 bars. The high performance of Resinex

floats has brought INGV to choose Resinex again. This time, the Resinex contribution has concerned the supply of 24 special floats for the Emso-MedIT project, the ambitious INGV project started in 2013 for the reinforcement of the infrastructures of marine research in Sicily, Campania and Apulia. Specifically, Emso-MedIT is an aspiring project, coordinated by INGV and involves other research partners such as CNR (National Research Centre), ISPRA and INFN, whose main aim is to strengthen the marine infrastructures for monitoring sea beds of sites of particular strategic interest. It is about special ring floats, having a body in syntactic foam and a cover made of elastomer polyurethane, able to arrive at 6000 metres of water depth. Floats were installed during the summer 2014 off Cefalù coast during the TOMO ETNA campaign. In July 2015 Resinex was called again to supply high depth floats for EMSO MedIT Project after the successful results achieved last years. This time INGV through Mec-


canotecnica Riesi requested 88 syntactic foam floats with different sizes to realise two EMSO MedIT Projects. Deep water syntactic foam floats have been manufactured with a special syntactic material that does not absorb water. Moreover, the floats are able to reach 6000 metre depth and to withstand pressures up to 600 bars. Our quality always guarantees a proper support for important projects.

Resinex buoy to monitor the climate change

In 2015 Resinex created a special buoy for a Colombian Oceanography project in cooperation with Vansolix.

Resinex supplied an Oceanographic buoy PEM 18x1200 for 20 m depth built with special features able to support the instruments for measuring wind speed and wind direction, temperature, relative humidity, atmospheric pressure, pH, conductivity, salinity, water temperature, chlorophyll. This project, financed by Banco Interamericano de Desarrollo (BID), was designed to monitor weather conditions and water quality in the archipelago of San Andres-Colombia specifically in Bolívar Cay to check the effects of climate change on the marine reserve "Seaflower". The Seaflower MPA (Marine Protected Area) is located in the Southwestern Caribbean eco-region and, at this time, is the 7th largest MPA in the world at just over 6,500,000 ha. It includes diverse coastal and marine ecosystems of the Archipelago of San Andres, Old Providence and Santa Catalina.

These surveys are very important nowadays to monitor the increase of surface temperature. These phenomena are linked to the bleaching of corals in the Caribbean and are expected to induce a pole-ward shift of local fisheries. Higher sea surface temperature is already threatening the viability of corals in the western Caribbean, much of it located in the Colombian territorial sea, which constitutes the nursery of an estimated 65% of fish species in the area. The project development objective is to support Colombia's efforts to define and implement specific pilot adaptation measures and policy options to meet the anticipated impacts from climate change. For this reason, Resinex, strong in its experience about the supply of numerous MPAs in the world, has been chosen to provide the Oceanographic buoy guaranteeing a specific ad-hoc support for the weather surveys.

Resinex float collars 3000 m depth onboard subsea vehicles

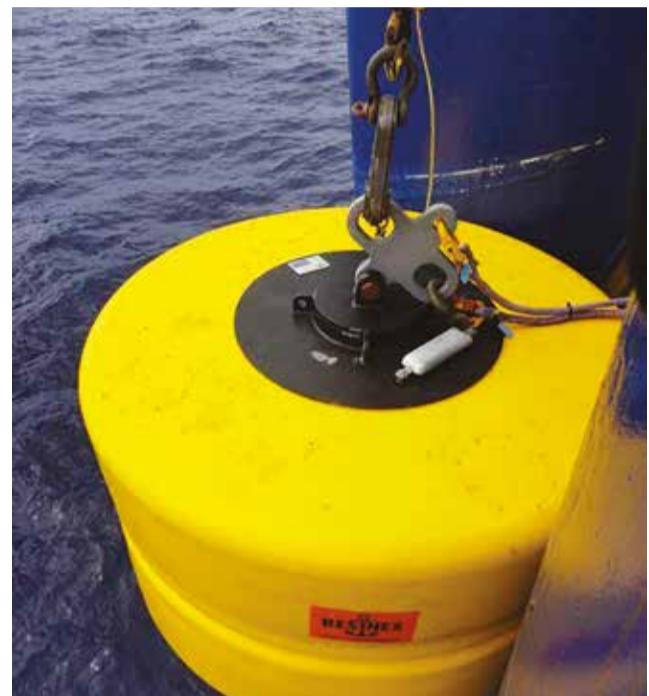
In 2014 Resinex provided float collars to iXBlue equipped with stainless steel inserts and rated at 3000 m.

iXBlue is a leading global provider of innovative solutions and services for navigation, positioning, and imaging. Civil and defense customers rely on our systems, operations, and services for the challenges they face at sea, on land, in the air or in space.

The supplied floats were actually intended to be mounted around the body of an Acoustic Miniature Transponders from MT9x2 series.

These transponders are usually integrated onboard subsea vehicles for positioning through an USBL system under the hull of a surface vessel.

The MT9x2 devices were ordered by iXBlue featuring Fugro Survey in UAE.



US Navy acoustic array

Atlantic Undersea Test (AUTEC) uses Resinex buoys

In early 2012 Resinex supplied to Sound and Sea Technology (SST) of Lynnwood – WA – 4 big buoys for underwater usage (between 150 and 360 m depth). Maximum net buoyancy 2950 kg. The buoys were installed in summer 2012 in the South Atlantic Ocean. The end user is the Naval Facilities Engineering Services Center (NFESC) of US Navy that designed a Surface Ship Radiated Noise Measurement (SSRNM) array to be installed at the Atlantic Undersea Test and Evaluation Center (AUTEC). After that, Resinex received from SST a twin order of four buoys also to be deployed from 150 and 360 m depth. Maximum buoyancy 3600 kg. This time the four buoys were installed in 2014. NFESC is the utilizer of this mid-Pacific Surface Ship Radiated Noise Measurement (SSRNM MID-PAC) array off Oahu, Hawaii. The SSRNM MID-PAC system will be similar to the SSRNM AUTEC system with the hydrophone arrays and electronics being identical.

Resinex support buoys for Osean and French Navy project

In 2014 Resinex provided 51 floats RS3x700 rated at 1000 m to Osean to be used to support the sea-shore cable. Osean is a company specialized in the survey and manufacture of innovative systems performing in harsh environment, including the design of scientific and military underwater systems. With a second supply, we have provided one buoy E11x900 up to 1000 m to be used as support of underwater acoustic transmitter.

Both kind of buoys have been realized for an underwater measurement station for the French Navy, the maritime arm of the French Forces.

Advanced monitoring in the Black Sea

At the end of February 2015, the first of the 5 buoys commissioned to Resinex by Envirtech (on demand of the Turkish Meteorological General Direction), was installed.

Thanks to the cooperation of Resinex, Envirtech has achieved and positioned in the waters of the Black Sea, more precisely at 10 nautical miles northward Samsun, one hi-tech buoy for meteorological surveys. The buoy (type FP 2500 Monitor) is composed of a three module float (1800 mm wide, 1600 mm high) which supports a stainless steel structure able to host the survey system and data transmission system.

The supplied buoys are part of the ambitious project which aims to make a wide net of automatic stations for the environmental monitoring through buoys.

A project which started in 2014 with the installation of a similar system in the Marmara Sea (served by the Turkish Petroleum Corporation) and which now will be extended to all the Turkish waters. After Samsun, the same system will

be adopted in the Bosphorus, in Antalya Port and in Tasucu Port. The above mentioned buoys, besides giving a constant meteo monitoring, are able to make a considerable variety of surveys: from the water salinity, to the marine current measurements, passing through the wave measurement and the tsunami prevention.

RESINEX

Wind monitoring with elastic beacon

RSE SpA - Research on Energy System SpA - is a corporation of the GSE Group (controlled by the Italian Ministry of Economic Development).

The company develops its research activities in the field of electro-energy, with particular reference to national strategic projects of general public interest.

RSE, in mid-2012, installed a large elastic beacon off the coast of Mazara del Vallo (Sicily Channel) to constantly monitor the marine weather data with particular attention to the wind.

This beacon, deployed at 50 metres depth, continuously provides data that will be used to provide guidelines for the installation of wind farms for the production of electricity.

Resinex has also supplied small buoys installed at the seabed of 50 metres.

Compact buoys for seismic activity in Brazilian waters

In early 2013 Resinex supplied 31 Deep Water buoyancy elements to GeoRxt-Brazil (now part of Georadar Group) for their seismic activity in Brazilian waters.

The buoys were especially designed to match the needs of the Brazilian competitor: they had to be reliable, compact, squared and able to go till 400 metres underwater.

Nett Buoyancy 1000 kg.

Tail buoys in partnership with Polarcus

The field of oil exploration is still one of the most important for Resinex. During 2012, we signed a major partnership with Polarcus, a company listed on the Oslo Stock Exchange, but with operational headquarters in Dubai, which creates seismic analysis in the sea with its own fleet of vessels. The two companies have studied and developed an innovative tail buoy, designed specifically for the study and the data transmission. Resinex has developed new moulds and created the prototype, following step by step, all the technical specifications of the customer.

The buoys will be used in the course of study of the seabed, to detect the presence of oil fields. At regular intervals the sound waves generated by underwater air compressed explosions will be gathered by the instruments positioned on the floats and then transmitted to the main vessel. About twenty prototypes were made and then placed along the west coast of Norway for a series of tests. The supply started in 2012 and has continued in the following years.

3000 metres under Indian waters

In the second half of 2011 Resinex supplied 150 pieces of umbilical cable floats to NIOT (National Institute of Ocean Technology) of India. The floats have been designed to maximize hydrodynamics and resistance under pressure at 3000 metres operational depth. The floats are used to generate a Lazy S curve during deployment operations of an Autonomous Coring System (ACS) using steel aramid umbilical. Nett buoyancy is 20 kg at 3000 m operative depth. Autonomous Coring System (ACS) is deployed by NIOT in joint collaboration with M/s Williamson & Associates, Seattle, USA. System is capable to take 100 m long cores from ocean basins up-to the maximum depth of 3000 m. System is integrated with pressure core sampler for the recovery of gas hydrates at in situ pressure condition.

Tsunami Alarm in Korea

With 12 very special Resinex PEM 43 buoys

From 2010 to 2015, Resinex has been supplying giant buoys to be used in an integrated system and anti-tsunami alert in Korea.

They were ordered by Oceantech, a specialized company, in order to be dislocated off the South Korean coast. We are referring to 12 buoys type PEM 43, 4,3 metres of diameter, 2 metres in height, which were delivered by our company throughout these years to the port of Busan. They were able to get a nett buoyancy of 23 tons and were positioned in the sea (with seabed of 150 metres) in a stretch of water where currents reach 1 meter per second with waves up to eight metres of height. On the marine component, Meteo CO₂ Monitoring and wave measuring sensors were installed. Besides these, even an acoustic transducer was positioned in order to receive signals from the submerged monitoring system. This supply goes together with many others of the recent years, all coming from Asia concerning tsunami alarm system.

German Oceanology up to 6000 meter depth

The Leibniz Institute at University of Kiel in Germany is one of the most prestigious European research institute. It has 750 technical and scientific employees all involved in marine science, geology and meteorological researches. For new experiments in ultra deepwater also the Leibniz Institute uses Resinex syntactic foam blocks. During 2010 various blocks were supplied by Resinex to be used at a depth of 4000 metres and at 6000 metres.

The syntactic foam products are produced by Resinex in its specialized plant of Torbiato. Then, they are tested in the other specialized plant of Adro where the pressure and buoyancy test are performed. The pressure tanks at Adro plant can test till 880 bars (8800 metres). The Leibniz Institute makes research in all the oceans' world. The four division studies: Ocean Circulation and Climate Dynamics, Marine Biogeochemistry, Marine Ecology and Dynamics of the Ocean Floor.

During 2013 Resinex supplied another important actor of German Oceanology. 140 squared floats with a nett buoyancy from 17 to 21 kg were supplied to Geomar.

The operative water depth is 6000 metres.

From the depths to the stars

A telescope in the Mediterranean to look at the sky

Descending until and beyond 3000 metres under the level of the sea even though it was projected to sustain pressures until 400 bars can be found the experimental Nemo project (Neutrino Mediterranean Observatory) which the Institute of Nuclear Physics (INFN) has in course to create a telescope of a new conception, baptised "Kilometro cubo" (Cubic kilometre).

The syntactic foam floats which support this installation are Resinex products, just as those used in 2005 during the first phase of the experiment. In the light of experience the new buoys have been made thin-

ner, obtaining greater modularity. Purposely studied for deep water, they were positioned at the base of the mini towers which give support to the structure and are currently in the test phase. The Nemo project foresees the construction of a big submerged antenna in order to reveal high energy neutrinos coming from astrophysics sources. Revealing the presence of neutrinos could extend the knowledge of the actual astronomy which is based on the revealing of photons, that is light and electromagnetic radiation.

It also represents the biggest monitoring station (oceanographic, geophysical, chemical and acoustic)

in the marine environment as well as a pole of technology development for the exploration of the abyss. The definite location will probably be off Cape Passetto (Sicily), which will permit the telescope to be positioned at a depth of about 3500 metres and some 100 kilometres off the coast of Sicily. Under this stretch of water, the telescope will be in optimum position of darkness in respect to low energy cosmic radiation that at a more shallow level would counter it and not allow the observation of the neutrinos. It will extend for two square kilometres and is made up of 81750 metre high towers with about 5000 light sensors.

Buoy modules for RXT in Brazil

Reservoir Exploration Technology (RXT), the Norwegian company specializing in geophysical relief of the seabed exploration on behalf of the oil industry and seismic control has been furnished with Resinex support floats assembled on surface buoys destined for the new operational field in Brazil.

These are floating modules which support an installation for registering signals from the seabed. After the delivery of 40 medium depth buoys (300 metres) the Scandinavian company confirms the choice of Resinex buoys for its seabed mapping operation.

The Nemo module with Resinex orange buoys rated 4000 metre water depth.

Vulcanology at 6000 metres

The National Institute of Geophysics and Vulcanology of Rome (INGV), which carries out a precious work regarding seismic research and vulcanology is also involved in the study of underwater telluric phenomena. It manages among others a large band Mediterranean MedNet seismic net which continuously monitors in deep water, reaching depths of 6000 metres. Also INGV turns to Resinex technology to have reliable and sure deep water syntactic foam modules. Resinex is able to produce floats which can support pressures of up to 1100 bars.

CNR uses Resinex deep water

The image refers to an oceanic moorage with a Resinex buoy by Cnr-Issia of Genoa and Enea-Cram of La Spezia near the Odas Italia 1 buoy-laboratory anchored in the middle of the Ligurian Sea at a depth of 1200 metres.

The positioning was carried out by technicians from the National Research Centre (CNR) and the Italian Navy ship Tavolara. The Resinex buoy was studied to operate at a depth of 300 metres and will be utilized in the sphere of the CNR experiments.

RESINEX

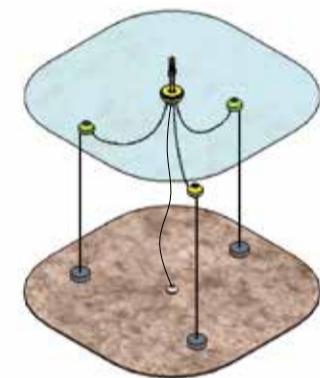
Tsunami sentinels

Warning system in the southern Chinese Sea


The two early warning anti tsunami systems designed to the state oceanographic administration of the People's Republic of China that are to be positioned in the South China Sea will use Resinex buoys. This is the marine component of the system and is made up of two Poseidon class Envirtech tsunami metres positioned at a depth of about 4000 metres and supported by two oceanic Resinex buoys built to resist force 12 seas and of two mooring lines formed by Resinex Synt floats studied for 4000 metre depths. The system will have to remain the sea for two consecutive years without maintenance in a zone continually bom-

barded by tropical typhoons. The buoys, extremely stable, will have to withstand more than 120 kilometre winds and 12 m waves, conditions which are, by now, very frequent in the South China Sea.

The system is composed of two monitoring stations dislocated at a depth potentially covering between 500 and 7000 metres which transmits pressure parameters taken from the seabed and relays them to the surface buoy which in turn transmits the information via satellite to a control centre situated in Beijing therefore giving the alarm for a tsunami generated off the southern Chinese coast.



Deployment of the buoys in the China Sea.

Above, the monitoring system diagram.

A non-rotation anchorage

Corr-Tek is a company which is involved in the production of scientific measuring instruments for water monitoring as well as planning and installation of plants for measuring drainage and in controlling physical and chemical water parameters.

It had to project a marine survey station, particularly stable, positioned off the port of Goro (North Adriatic). Our technical office, as a result, created a floating laboratory formed by a central buoy with three anchorage points supported by jumpers which guaranteed both stability and resilience.

Otranto: canal monitoring

The National Institute of Oceanography and Experimental Geophysics (OGS) of Trieste has installed an instrument monitoring buoy in the Otranto canal as part of a European project. This is a floating system connected to a depth of 1200 metres and fitted instruments and sensors in order to carry out profiles of the wind and water. For this project a Resinex model PEM 18 buoy was used with a float of 1.8 metre diameter with a signalling lantern. The power is guaranteed by solar panels.

Among the Antarctic ice

It was tested twice. The first time in February 2009 in the Black Sea by the Nato alliance research ship. The second time in the central Ligurian Sea by the Italian naval ship Tavolara. We are speaking about the Resinex model RS6 buoy which is destined to carry out scientific experiments in the gelid waters of the Antarctica. It will be part of the national research programme in Antarctica, an Italian project which is studying planetary phenomena.

RESINEX

A sonar in the Alaskan fiord

Resinex buoys for measuring acoustic health of U.S. Submarines

Its name is SEAFAC, which stands for Southeast Alaska Acoustic Measurement Facility, and it is an important and continuing U.S. Navy project developed by Naval Surface Warfare Center (NSWC) for the purpose of measuring the acoustic signatures of naval vessels. Science Applications International Corporation recently upgraded the measurement capabilities at the facility on behalf of NSWC. As part of these facility upgrades, SAIC opted to use Resinex support buoys.

The SEAFAC site, in operation since 1991, is located in the Behm Canal, a fiord in an isolated area of Alaska, near Ketchikan. The location and depth of this fiord provide low environmental noise levels, without acoustic interference. In this remote, quiet environment, advanced measurements are carried out

to assess the noise levels generated by American submarines while navigating at full speed in deep water. The aim was to reduce noise levels to a minimum for the latest Seawolf and Virginia classes of submarines. SAIC will mount these highly sensitive hydrophone arrays on two cables supported by two large Resinex support buoys suspended 45 metres below the sea surface. When the submarine passes between the two arrays, the system will acquire all of the necessary acoustic measurements. This process involves the use of costly, sophisticated, and advanced electronic equipment, and Resinex is pleased that SAIC has chosen to use its Resinex type PEM 21 floats (2.1 metres width by 3.1 metres height, tested to operate at a depth of 60 metres and produce 6 tons of nett buoyancy).

Reliability: Resinex buoys keep the sensor lines under tension at 45 m depth.

Sound in depth with Sonardyne

The British company Sonardyne, the world market leader in underwater positioning continues to cooperate with Resinex for the supply of high performance floatation collars for its range of subsea acoustic transponders. The smaller floatation collar is able to support transponders to depths of 500 metres while the larger float is designed for transponders operating at depths of 3000, 5000 and 7000 metres.

University deepens its study in the abyss

The buoys on the deck before deployment.

Tested to operate in total safety to a level of 500 metres below sea level, 2 deep water buoys were delivered in Autumn 2008 to the University of Azores. The 2 buoys were ordered by the Oceanographic and Fish department of the said University and are positioned off Ponta Delgada in the island of San Miguel as a support for its study of ocean currents and fish movements in the area.

They are 2 floats formed by an external shell in polyethylene rotationally moulded filled with syntactic foam capable of resisting at great depths.

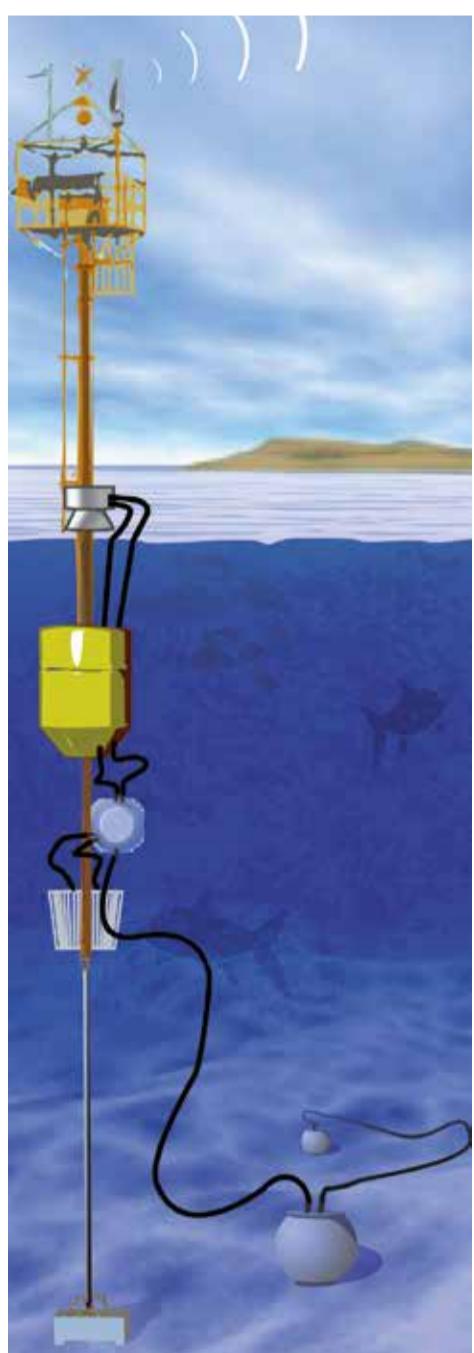
Both buoys are vertically crossed by a steel bar.

The bigger one measures 1.2 metres in diameter by 1.24 metres in height and has a swivel type hook for every extremity that can become 1.75 high (produces 745 kg of nett buoyancy).

The other, 1.15 metres in diameter by 1.15 metres in height, which in its upper part can accommodate a sensor, generates a nett buoyancy of 710 kg.

Telecom test at 2090 metres depth

The first tsunami warning system in the Mediterranean Sea


The first step, towards the end of 2006, consisted of the positioning of the system in the South Tyrrhenian, a few kilometres off Palermo at a water depth of 2090 metres. This was the test system for the Me Tas Mediterranean Tsunami Alarm System, a project for the monitoring of the water and sea bed instituted by Telecom Italia using Resinex buoys. The prototype consists of two principle components, always linked together by a bi-directional acoustic modem: a platform is situated in deep water and float for satellite transmission. The platform collects the data

provided by the sismometres and also records pressure variations, directly correlated to the indications of an expected tsunami or to the passage of one. The buoy, through the modem which remains connected to the platform on the bottom, transmits the data via satellite to Les Immarsat of Fucino which in turn passes it onto the Envirtech laboratories for preliminary tests. Finally everything is elaborated by the Environmental Agency and Technical Services (Apat) which gives scientific support and approval of the results. This experiment, which makes use of giant Res-

inex floats (a buoy of 1.3 metres in diameter and 13 metres long assigned to the receiving and transmission of data plus another 11 deep water buoys for the buoyancy of the mooring system), has the scope to calibrate the measuring procedure and alarm. The data and any danger warnings flow directly to a control centre which in turn passes such information to the competent authority. The system can be transferred to every port of the world and positioned at any sea depth and has therefore a vast range of potential applications.

Above, the long Resinex buoy on the deck. Right, positioning of the deep water platform.

Alenia controls the bradyseism

The bradyseism of the Gulf of Pozzuoli is the old phenomenon which produces the upward slide of the coast and the slow but inexorable deterioration of the inhabited area. This zone is scrutinized by every type of monitoring and it is exactly here that Resinex, in Autumn 2006, gave its own contribution with a big beacon which made up the floating competent of the project developed by Alenia (www.alenia-aeronautica.it) through Meg Sud. It is a system of control and analysis positioned at a depth of about 100

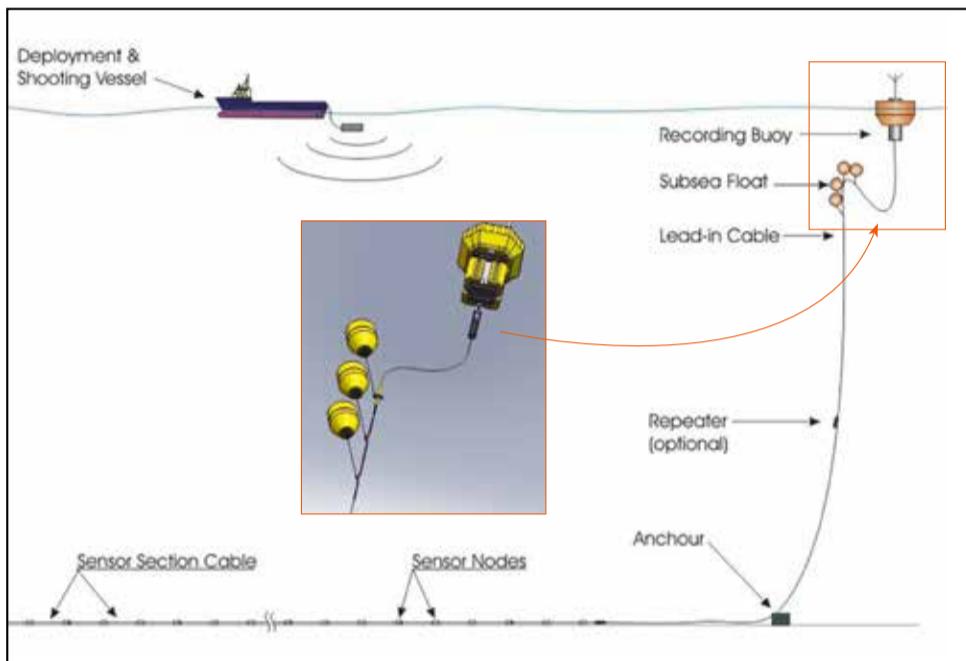
metres and linked to a central exchange situated on a square metal tower which transmits all collected data to a land base. The equipment is powered by solar panels able to generate a power of 200 watts with a tension of 12 volts. The choice of Alenia to use an elastic beacon anchored in 100 metre deep water is the most recent testimony of the reliability and versatility of Resinex elastic beacons "invented" by our company in the 70's and used in hundreds of installations throughout the world.

Rogue waves, the Thai organisation

Resinex has supplied 2 Spar buoys for the Thailand tsunami warning system designed and developed by Envirtech. The buoys are installed in the Andaman sea at about 200 nautical miles from the Thai coasts at 2300 and 2700 metres of water depth. Each buoy is equipped with redundant acoustic link and satellite link for the communication with underwater module for the detection of tsunami waves and with a data centre located in Bangkok for the reception of tide data and alarm messages. Each buoy is equipped

with solar panels autonomous power supply system, with wireless link for data communication, Gps receiver, signalling light and radar reflector Iala compliant.

The stability of the Spar configuration allows to get reliable acoustic communication also in case of high sea states.


The implemented system allows to increase the safety of the Thai coasts providing an alarm one hour in advance in case of detection of anomalous waves over the normal tide.

RESINEX

Seismic activity in the seven seas

40 buoys for sea mapping

Above: working scheme of the RXT sensor system for the sea bed detections.
Right: the installation of the Resinex buoys.

Reservoir Exploration Technology (RXT) was a Norwegian company extremely specialized, with branches all over the world. They deal with geo-physical relief and with the acquisition of data about the sea bed for the various usages, from the checking of the sounding depths, to the positioning of cables and hoses, to the detections for the oil industry. RXT puts on the sea bed the sensors, arranging a series of special cables which communicate with the signals emitted by the support vessel and send the data to a surface buoy which records them. The sensors grant a precise and detailed analysis of the ground. Since 2007 also RXT has discovered the reliability of Resinex deep water floats. They ordered 40 pieces to use them for different seismic detections which they have to make up to 1000 metres water depth for the oil reconnaissance. Resinex floats are used at about 300 metres under sea level to support the weight of the cables, full of sensors positioned at the bottom.

In the last years of activity the marine operations took place in Nigeria, in the Gulf of Mexico, in Brazil and in the Caspian Sea.

Stromboli, under the volcano

The University of Florence Department of Science on behalf of the Italian Civil Protection has positioned off the coast of the island of Stromboli (southern Tyrrhenian Sea) a Resinex elastic beacon equipped with a wave metre and hydro-acoustic system.

The aim is to monitor the stability of the submerged flank of the Stromboli volcano, the famous "Sciara" of fire. In December 2002 a volcanic eruption did in effect produce an instability of the said "Sciara" of

fire which, sliding into the sea (about 10 million cubic metres), created a tsunami wave which invested the southern Tyrrhenian Sea causing substantial damage to all the Eolie islands as well as along the Calabrian and Sicilian coastlines.

Thanks to a sinker of about 15 tons, connected by means of an anti-torsion cable, the beacon is anchored some 200 metres off the coast to a depth of 43 metres.

The set of instruments mounted on the Resinex beacon is made up of a large band hydrostatic pressure sensor, a water temperature sensor, a hydro-acoustic sensor (positioned at 14 metre depth), two tiltimeters and a Gps (on the tower).

The beacon is therefore able to provide immediately variables of hydrostatic pressure and consent the complete monitoring of marine fluctuations. The hydrophone, positioned at a 14 metre depth, is used to register any possible hydro-acoustic waves resulting from the underwater sliding of the volcano and which propagates in the water at speeds of 1500 metres per second. The Gps receiver ensures the correct temporal synchronization of all data on board and monitors the geographical position. All the equipment on board is monitored by an

The beacon is equipped with many monitoring systems powered by solar panels.

electronic control system totally developed by the National Institute of Applied Optics of Florence in collaboration with Bioage S.r.l. The signals transmitted by the beacon also contain a series of diagnostic parameters which enable the immediate and continuous monitoring of the on board instrumentation and timely maintenance procedures.

The entire monitoring system is powered by three solar panels but has the capacity to operate autonomously for long periods (about 6 months) without the aid of the panels.